Cilt 12 Sayı 4 (2024): Business & Management Studies: An International Journal
Makaleler

COVİD-19 süresince ve sonrasında yapay zekâ destekli yemek teslimat sistemlerinde müşteri memnuniyeti ve sadakatini etkileyen faktörler

Can Saygıner
Dr. Öğr. Üyesi, İzmir Demokrasi Üniversitesi, İzmir, Türkiye

Yayınlanmış 25.12.2024

Anahtar Kelimeler

  • Yapay Zekâ Destekli Yemek Teslimat Sistemleri, COVİD-19, Çoklu Regresyon Analizi, Müşteri Memnuniyeti ve Sadakati
  • AI-Driven Food Delivery Systems, COVID-19, Multiple Regression Analysis, Customer Satisfaction and Loyalty

Nasıl Atıf Yapılır

COVİD-19 süresince ve sonrasında yapay zekâ destekli yemek teslimat sistemlerinde müşteri memnuniyeti ve sadakatini etkileyen faktörler. (2024). Business & Management Studies: An International Journal, 12(4), 674-692. https://doi.org/10.15295/bmij.v12i4.2398

Nasıl Atıf Yapılır

COVİD-19 süresince ve sonrasında yapay zekâ destekli yemek teslimat sistemlerinde müşteri memnuniyeti ve sadakatini etkileyen faktörler. (2024). Business & Management Studies: An International Journal, 12(4), 674-692. https://doi.org/10.15295/bmij.v12i4.2398

Öz

Bu araştırma, COVİD-19 esnasında ve sonrasında, yapay zekâ destekli yemek dağıtım sistemlerinin farklı boyutlarının müşteri tatmini ve bağlılığı üzerine olan etkilerini değerlendirmeyi amaçlamaktadır. 294 katılımcıya 32 soru yöneltilmiş ve buradan elde edilen verilere, nicel araştırma yöntemi ve çoklu regresyon analizi gerçekleştirilmiştir. Bu analizde fiyat indirimi, promosyon faydası, bilgi kalitesi, hedonik motivasyon, güvenli ambalajlama ve algılanan şiddet gibi faktörler incelenmiştir. Pandemi sırasında düzeltilmiş R² değeri 0,715, pandemi sonrası dönemde ise 0,489 olan bu çalışma ile salgının tüketici davranışlarını nasıl etkilediği ortaya konmaktadır. Ayrıca, bilgi kalitesi ve hedonik motivasyonun müşteri memnuniyeti ve sadakati (MMS) üzerindeki önemli iki etken olduğu sonucuna varılmıştır. Bu araştırma, salgın sonrası dönemde yapay zekâ destekli hizmet sunumunun geliştirilerek yapay zekâ tabanlı yemek dağıtım hizmetlerine yönelik tüketici motivasyonunun daha iyi anlaşılmasını sağlamayı hedeflemektedir. Bu araştırma, yemek teslimat sistemleri için yapay zekâ sistemlerinin geliştirilmesine yönelik bazı öneriler sunmaktadır.

Referanslar

  1. Alaimo, L. S., Fiore, M., & Galati, A. (2020). How the COVID-19 pandemic is changing online food shopping human behaviour in Italy. Sustainability, 12(22), 9594. https://doi.org/10.3390/su12229594
  2. Amin, M. A, Arefin, M. S., Alam, M. R., Ahammad, T., & Hoque, M. R. (2021). Using mobile food delivery applications during COVID-19 pandemic: An extended model of planned behaviour. Journal of Food Products Marketing, 27(2), 105-126. https://doi.org/10.1080/10454446.2021.1906817
  3. Anis, Z. B., Iqbal, R., Nazir, W., & Khalid, N. (2022). Technological advances in supply chain of processed foods during Covid-19: A review. Arab Gulf Journal of Scientific Research, 41(2), 158-174. https://doi.org/10.1108/agjsr-09-2022-0164
  4. Annosi, M. C., Brunetta, F., Capo, F., & Heideveld, L. (2020). Digitalisation in the agri-food industry: The relationship between technology and sustainable development. Management Decision, 58(8), 1737-1757. https://doi.org/10.1108/md-09-2019-1328
  5. Anser, M. K., Osabohien, R., Olonade, O., Karakara, A. A., Olalekan, I. B., Ashraf, J., & Igbinoba, A. (2021). Impact of ICT adoption and governance interaction on food security in West Africa. Sustainability, 13(10), 5570. https://doi.org/10.3390/su13105570
  6. Aras, S., & Zaidi, M. (2017). Tameless traitors: Macrophages in cancer progression and metastasis. British Journal of Cancer, 117(11), 1583-1591. https://doi.org/10.1038/bjc.2017.356
  7. Baber, H. (2021). Efficacy of COVID-19 screening system and customer satisfaction in banks: Moderating role of the perceived threat and health risk. Journal of Financial Services Marketing, 26, 295-304. https://doi.org/10.1057/s41264-021-00120-1
  8. Baglar, N. A. (2020). Artificial intelligence for social good: From a global perspective to a regional one. Institute for Graduate Studies in Social Sciences, Master thesis, Bogazici University.
  9. Barıs, A., & Yilmaz, T. (2022). Consumers' perceptions of online grocery applications: 'Getir' a case study in Turkey. Maltepe Üniversitesi İletişim Fakültesi Dergisi, 8(2), 206-228.
  10. Bozdag, A. A., & Durmus, B. (2023). The psychological underpinnings of Turkish consumer choices: Xenocentrism. Journal of International Consumer Marketing, 1-16. https://doi.org/10.1080/08961530.2023.2291817
  11. Carandang, K. J., & Apritado, J. M. M. (2022). Customer's intention and its mediating effect on the satisfaction and loyalty towards online food delivery of quick service restaurants. International Journal of Research Studies in Management, 10(3), 45-58. https://doi.org/10.5861/ijrsm.2022.34
  12. Chan, J., & Gao, Y. L. (2021). Measuring the up-to-date quality of online food delivery: Formative index construction. International Journal of Contemporary Hospitality Management, 33(12), 4550-4568. https://doi.org/10.1108/ijchm-06-2021-0739
  13. Chang, H.-H., & Meyerhoefer, C. D. (2020). COVID‐19 and the demand for online food shopping services: Empirical evidence from Taiwan. American Journal of Agricultural Economics, 103(2), 448-465. https://doi.org/10.1111/ajae.12170
  14. Chanpariyavatevong, K., Wipulanusat, W., Champahom, T., Jomnonkwao, S., Chonsalasin, D., & Ratanavaraha, V. (2021). Predicting airline customer loyalty by integrating structural equation modeling and Bayesian networks. Sustainability, 13(13), 7046. https://doi.org/10.3390/su13137046
  15. Cheong, J. H., & Park, M. (2005). Mobile internet acceptance in Korea. Internet Research, 15(2), 125-140. https://doi.org/10.1108/10662240510590324
  16. Devaraj, S., Fan, M., & Kohli, R. (2002). Antecedents of b2c channel satisfaction and preference: Validating e-commerce metrics. Information Systems Research, 13(3), 316-333. https://doi.org/10.1287/isre.13.3.316.77
  17. Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression. Biometrika, 37(3-4), 409–428. https://doi.org/10.1093/biomet/37.3-4.409
  18. Els, D., & Bisschoff, C. (2023). A post-COVID model to measure brand loyalty of banking clients. Banks and Bank Systems, 18(2), 24-37. https://doi.org/10.21511/bbs.18(2).2023.03
  19. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Reading, MA: Addison-Wesley.
  20. Gavilan, D., Balderas-Cejudo, A., Fernandez-Lores, S., & Martinez-Navarro, G. (2021). Innovation in online food delivery: Learnings from COVID-19. International Journal of Gastronomy and Food Science, 24, 100330. https://doi.org/10.1016/j.ijgfs.2021.100330
  21. Hair, J. F., Black, W.C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th Edition). Pearson Education, Upper Saddle River. ISBN: 9780135153093
  22. Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. (2013). Multivariate Data Analysis: Pearson New International Edition. Pearson Education Limited. ISBN: 9781292021904
  23. Hair Jr, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced issues in partial least squares structural equation modelling. Sage publications Inc. ISBN: 9781071862506
  24. Han, H., & Ryu, K. (2009). The roles of the physical environment, price perception, and customer satisfaction in determining customer loyalty in the restaurant industry. Journal of Hospitality & Tourism Research, 33(4), 487-510. https://doi.org/10.1177/1096348009344212
  25. Haruna, B., Kaur, K., & Tahira, M. (2017). Modelling web-based library service quality and user loyalty in the context of a developing country. The Electronic Library, 35(3), 507-519. https://doi.org/10.1108/el-10-2015-0211
  26. Hong, C., Choi, H., Choi, E.-K., & Joung, H.-W. (2021). Factors affecting customer intention to use online food delivery services before and during the COVID-19 pandemic. Journal of Hospitality and Tourism Management, 48, 509-518. https://doi.org/10.1016/j.jhtm.2021.08.012
  27. Jaiswal, A., Niraj, R., & Venugopal, P. (2010). Context-general and context-specific determinants of online satisfaction and loyalty for commerce and content sites. Journal of Interactive Marketing, 24(3), 222-238. https://doi.org/10.1016/j.intmar.2010.04.003
  28. Jati, L. J., Nuryakin, N., & Handayani, S. D. (2022). Service innnovation, service delivery system, and customers' satisfactory's correlation with official honda's dealer's customers' loyalty. Interdisciplinary Social Studies, 1(4), 403-412. https://doi.org/10.55324/iss.v1i4.84
  29. Jun, K., Yoon, B., Lee, S., & Lee, D. S. (2021). Factors influencing customer decisions to use online food delivery service during the COVID-19 pandemic. Foods, 11(1), 64. https://doi.org/10.3390/foods11010064
  30. Kasza, G., Veflen, N., Scholderer, J., Münter, L., Fekete, L., Csenki, E., Dorko, A., Szakos, D., & Izso, T. (2022). Conflicting issues of sustainable consumption and food safety: Risky consumer behaviours in reducing food waste and plastic packaging. Foods, 11(21), 3520. https://doi.org/10.3390/foods11213520
  31. Koay, K. Y., Cheah, C. W., & Chang, Y. (2022). A model of online food delivery service quality, customer satisfaction and customer loyalty: a combination of pls-sem and nca approaches. British Food Journal, 124(12), 4516-4532. https://doi.org/10.1108/bfj-10-2021-1169
  32. Kumar, I., Rawat, J., Mohd, N., & Husain, S. (2021). Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality, 2021, 1-10. https://doi.org/10.1155/2021/4535567
  33. Lezoche, M., Hernandez, J. E., Diaz, M. M. E. A., Panetto, H., & Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry, 117, 103187. https://doi.org/10.1016/j.compind.2020.103187
  34. Li, K., Chen, Y., Liu, J., Zhang, L., & Mu, X. (2021). Online food delivery platforms and restaurants' interactions in the context of the ban on using single-use plastics. IEEE Access, 9, 96210-96220. https://doi.org/10.1109/access.2021.3095296
  35. Lin, G. T. R., & Sun, C. (2009). Factors influencing satisfaction and loyalty in online shopping: An integrated model. Online Information Review, 33(3), 458-475. https://doi.org/10.1108/14684520910969907
  36. Liu, C., Zhou, L., Höschle, L., & Yu, X. (2023). Food price dynamics and regional clusters: Machine learning analysis of egg prices in China. China Agricultural Economic Review, 15(2), 416-432. https://doi.org/10.1108/caer-01-2022-0003
  37. Lohit, V. S., Mujahid, M. M., & Sai, G. K. (2022). Use of machine learning for continuous improvement and handling multidimensional data in service sector. Computational Intelligence and Machine Learning, 3(2), 30-35. https://doi.org/10.36647/ciml/03.02.a006
  38. Longgang, G., & Ming, C. W. (2023). An empirical study on the perceive severity, perceive ease of use and information quality on the SME' businesses in China. Journal of Digitainability, Realism & Mastery (DREAM), 2(10), 1-9. https://doi.org/10.56982/dream.v2i10.158
  39. Mahmood, H., Rehman, A. U., Sabir, I., Rauf, A., Afthanorhan, A., & Nawal, A. (2022). Restaurant diners' switching behaviour during the COVID-19 pandemic: Protection motivation theory. Frontiers in Psychology, 13, 833627. https://doi.org/10.3389/fpsyg.2022.833627
  40. Maingi, K. M., & Obonyo, G. O. (2022). Service delivery digitalisation as a tool for COVID- 19 recovery in fast-food restaurants in Nairobi, Kenya. Journal of Hospitality and Tourism, 2(2), 15-23. https://doi.org/10.47672/jht.1147
  41. Memon, S. U. R., Pawase, V. R., Pavase, T. R., & Soomro, M. A. (2021). Investigation of COVID-19 impact on the food and beverages industry: China and India perspective. Foods, 10(5), 1069. https://doi.org/10.3390/foods10051069
  42. Muangmee, C., Kot, S., Meekaewkunchorn, N., Kassakorn, N., & Khalid, B. (2021). Factors determining the behavioural intention of using food delivery apps during COVID-19 pandemics. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1297-1310. https://doi.org/10.3390/jtaer16050073
  43. Mustapha, S., Man, N., Shah, J. A., Kamaruzzaman, N. H., & Tafida, A. A. (2022). Mediating role of motivation in the relationships between awareness, accessibility, perceived organisational support and adoption of ICT among extension agents in North-East, Nigeria. Journal of Agricultural Science and Technology, 24(6), 1313-1329. https://doi.org/10.52547/jast.24.6.1313
  44. Naz, F., Alshaabani, A., Rudnak, I., & Magda, R. (2021). Role of service quality in improving customer loyalty towards telecom companies in Hungary during the COVID-19 pandemic. Economies, 9(4), 200. https://doi.org/10.3390/economies9040200
  45. Pal, D., Funilkul, S., Eamsinvattana, W., & Siyal, S. (2022). Using online food delivery applications during the COVID-19 lockdown period: What drives University Students' satisfaction and loyalty?. Journal of Foodservice Business Research, 25(5), 561-605. https://doi.org/10.1080/15378020.2021.1964419
  46. Palmatier, R. W., Scheer, L. K., & Steenkamp, J. E. M. (2007). Customer loyalty to whom? Managing the benefits and risks of salesperson-owned loyalty. Journal of Marketing Research, 44(2), 185-199. https://doi.org/10.1509/jmkr.44.2.18
  47. Pigatto, G., Machado, J. G. d. C. F., Negreti, A. d. S., & Machado, L. M. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657. https://doi.org/10.1108/bfj-05-2016-0207
  48. Prasetyo, Y. T., Tanto, H., Mariyanto, M., Hanjaya, C., Young, M. N., Persada, S. F., Miraja, B. A., & Redi, A. A. N. P. (2021). Factors affecting customer satisfaction and loyalty in online food delivery service during the COVID-19 pandemic: Its relation with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 76. https://doi.org/10.3390/joitmc7010076
  49. Rai, S. K. (2022). Issues, challenges, and ways ahead to develop citizen-centric e-governance in Nepal. Journal of Management and Development Studies, 31(01), 31-48. https://doi.org/10.3126/jmds.v31i01.52852
  50. Saad, A. T. (2020). Factors affecting online food delivery service in Bangladesh: An empirical study. British Food Journal, 123(2), 535-550. https://doi.org/10.1108/bfj-05-2020-0449
  51. Santi, R., Garrone, P., Iannantuoni, M., & Del Curto, B. (2022). Sustainable food packaging: An integrative framework. Sustainability, 14(13), 8045. https://doi.org/10.3390/su14138045.
  52. Shekhar, R. & Vartika,.. (2022). Artificial intelligence in online food delivery: Exploring advantages, opportunities, and challenges ahead. Master Thesis of Computer Application Amity Institute of Information Technology, Amity University, Patna. https://doi.org/10.3390/mol2net-08-12635
  53. Suhartanto, D., Ali, M. H., Tan, K. H., Sjahroeddin, F., & Kusdibyo, L. (2018). Loyalty toward online food delivery service: The role of e-service quality and food quality. Journal of Foodservice Business Research, 22(1), 81-97. https://doi.org/10.1080/15378020.2018.1546076
  54. Sujata, J., Mukul, P., & Hasandeep, K. (2019). Role of smart communication technologies for smart retailing. International Journal of Innovative Technology and Exploring Engineering, 8(6S4), 1015-1020. https://doi.org/10.35940/ijitee.f1209.0486s419
  55. Tsolakis, N., Schumacher, R., Dora, M., & Kumar, M. (2022). Artificial intelligence and blockchain implementation in supply chains: A pathway to sustainability and data monetisation? Annals of Operations Research, 327(1), 157-210. https://doi.org/10.1007/s10479-022-04785-2
  56. Vinagre, J., Jorge, A. M., & Gama, J. (2018). Online bagging for recommender systems. Expert systems, 35(4). https://doi.org/10.1111/exsy.12303
  57. Warden, T., Oswald, F., Roth, E. M., Argall, B., Barry, B. , Carayon, P., Czaja, S., & Ratwani, R. (2020). The national academies board on human system integration (BOHSI) panel: Promise, progress and challenges of leveraging AI technology in healthcare. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 64(1), 2124-2128. https://doi.org/10.1177/1071181320641515
  58. Weiler, A. S. & Gilitwala, B. (2023). Why bangkokians use online food delivery services after covid-19 restrictions have been lifted. Rajagiri Management Journal, 18(2), 151-166. https://doi.org/10.1108/ramj-08-2023-0244
  59. Wieseke, J., Alavi, S., & Habel, J. (2014). Willing to pay more, eager to pay less: The role of customer loyalty in price negotiations. Journal of Marketing, 78(6), 17-37. https://doi.org/10.1509/jm.13.0104
  60. Wilson, N., & Goldie, K. (2022). How servqual and visitor satisfaction affect loyalty and positive wom within the Indonesian hotel sector?. Jurnal Muara Ilmu Ekonomi Dan Bisnis, 6(1), 28-42. https://doi.org/10.24912/jmieb.v6i1.15082
  61. Zhong, Y., & Moon, H. C. (2020). What drives customer satisfaction, loyalty, and happiness in fast-food restaurants in China? Perceived price, service quality, food quality, physical environment quality, and the moderating role of gender. Foods, 9(4), 460. https://doi.org/10.3390/foods9040460