Evolution of digital marketing campaigns with artificial intelligence and machine learning: Analysing success prediction capabilities

Published 2025-06-25
Keywords
- Digital Marketing, Machine Learning, Marketing Research, Campaign Success Prediction, Classification Models
- Dijital Pazarlama, Makine Öğrenme, Pazarlama Araştırmaları, Kampanya Başarı Tahmini, Sınıflandırma Modelleri
How to Cite
Copyright (c) 2025 Erkan Gülter- Muhammed Fatih Cevher

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
Abstract
This study aims to investigate the predictive capabilities of machine learning algorithms in forecasting the success of digital marketing campaigns. In addition, the study aims to evaluate the performance of machine learning algorithm classification models and to determine which classification model is more effective in making this prediction. In this direction, a classification analysis was performed with machine learning algorithms using a dataset of 10,001 digital marketing campaigns obtained from the Kaggle platform. The study's theoretical background is based on Attribution Modelling, the Technology Acceptance Model, Incremental Response Modelling, and the Diffusion of Innovations Theory. As a result of the analysis, it was revealed that the success prediction capabilities of machine learning algorithms for marketing campaigns are pretty high. In the study comparing the success prediction abilities of machine learning models, the Gradient Boosting model demonstrated the highest success prediction ability (93.31%). In comparison, the Logistic Regression model has the lowest predictive success rate (53.36%). The findings revealed that machine learning algorithms should be more widely incorporated into the marketing literature and that businesses can run more successful and efficient campaigns by utilising machine learning models in their marketing efforts.
References
- Abd, N. S., Atiyah, O. S., Ahmed, M. T., & Bakhit, A. (2024). Digital Marketing Data Classification by Using Machine Learning Algorithms. Iraqi Journal for Electrical and Electronic Engineering, 20(1). doi: 10.37917/ijeee.20.1.23
- Achyutha, P. N., Chaudhury, S., Bose, S. C., Kler, R., Surve, J., & Kaliyaperumal, K. (2022). User Classification and Stock Market‐Based Recommendation Engine Based on Machine Learning and Twitter Analysis. Mathematical Problems in Engineering, 2022(1), 4644855. https://doi.org/10.1155/2022/4644855
- Afolabi, I., Ifunaya, T. C., Ojo, F. G., & Moses, C. (2019, August). A model for business success prediction using machine learning algorithms. In Journal of Physics: Conference Series 1299 (1) p. 012050). IOP Publishing. doi: 10.1088/1742-6596/1299/1/012050
- Ansari, A., Li, Y., & Zhang, J. Z. (2018). Probabilistic topic model for hybrid recommender systems: A stochastic variational Bayesian approach. Marketing Science, 37(6), 987-1008. https://doi.org/10.1287/mksc.2018.1113
- Artrith, N., Butler, K. T., Coudert, F. X., Han, S., Isayev, O., Jain, A., & Walsh, A. (2021). Best practices in machine learning for chemistry. Nature chemistry, 13(6), 505-508. Access address: https://www.nature.com/articles/s41557-021-00716-z
- Bayoude, K., Ouassit, Y., Ardchir, S., & Azouazi, M. (2018). How machine learning potentials are transforming the practice of digital marketing: State of the art. Periodicals of Engineering and Natural Sciences, 6(2), 373-379. Access address: http://pen.ius.edu.ba
- Blomster, M., Koivumäki, T. (2022). Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing. Inf Syst E-Bus Manage 20, 123–169 (2022). https://doi.org/10.1007/s10257-021-00547-y
- Boddu, R. S. K., Santoki, A. A., Khurana, S., Koli, P. V., Rai, R., & Agrawal, A. (2022). An analysis to understand the role of machine learning, robotics and artificial intelligence in digital marketing. Materials Today: Proceedings, 56, 2288-2292. https://doi.org/10.1016/j.matpr.2021.11.637
- Cambria, E., Grassi, M., Hussain, A., & Havasi, C. (2012). Sentic computing for social media marketing. Multimedia tools and applications, 59, 557-577. https://doi.org/10.1007/s11042-011-0815-0
- Chakraborty, I., Kim, M., & Sudhir, K. (2019). Attribute sentiment scoring with online text reviews: Accounting for language structure and attribute self-selection. Cowles Foundation Discussion. Access address: https://ssrn.com/abstract=3395012
- Chen, Q., Cai, S., & Gu, X. (2021). Construction of the Luxury Marketing Model Based on Machine Learning Classification Algorithm. Scientific Programming, 2021(1), 6511552. https://doi.org/10.1155/2021/6511552
- Chiong, K. X., & Shum, M. (2019). Random projection estimation of discrete-choice models with large choice sets. Management Science, 65(1), 256-271. https://doi.org/10.1287/mnsc.2017.2928
- Cui, D., & Curry, D. (2005). Prediction in marketing using the support vector machine. Marketing Science, 24(4), 595-615. https://doi.org/10.1287/mksc.1050.0123
- Cui, G., Wong, M. L., & Lui, H. K. (2006). Machine learning for direct marketing response models: Bayesian networks with evolutionary programming. Management Science, 52(4), 597-612. https://doi.org/10.1287/mnsc.1060.0514
- Das, T. K. (2015, October). A customer classification prediction model based on machine learning techniques. In 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT) (pp. 321-326). IEEE. doi: 10.1109/ICATCCT.2015.7456903
- Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behaviour and Technology Adoption, 205(219), 5. Access address: efaidnbmnnnibpcajpcglclefindmkaj/https://quod.lib.umich.edu/b/busadwp/images/b/1/4/b1409190.0001.001.pdf
- Dhir, R., & Raj, A. (2018, December). Movie success prediction using machine learning algorithms and their comparison. In 2018 first international conference on secure cyber computing and communication (ICSCCC) (pp. 385-390). IEEE. doi: 10.1109/ICSCCC.2018.8703320
- Duarte, V., Zuniga-Jara, S., & Contreras, S. (2022). Machine learning and marketing: A systematic literature review. IEEE Access, 10, 93273-93288. doi: 10.1109/ACCESS.2022.3202896
- Guo, T., Sriram, S., & Manchanda, P. (2021). The effect of information disclosure on industry payments to physicians. Journal of Marketing Research, 58(1), 115-140. https://doi.org/10.1177/0022243720972106
- Hagen, L., Uetake, K., Yang, N., Bollinger, B., Chaney, A. J., Dzyabura, D., ... & Zhu, Y. (2020). How can machine learning aid behavioural marketing research?. Marketing Letters, 31, 361-370. https://doi.org/10.1007/s11002-020-09535-7
- Hair Jr, J. F., & Sarstedt, M. (2021). Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing. Journal of Marketing Theory and Practice, 29(1), 65-77. https://doi.org/10.1080/10696679.2020.1860683
- Hakim, A., Klorfeld, S., Sela, T., Friedman, D., Shabat-Simon, M., & Levy, D. J. (2021). Machines learn neuromarketing: Improving preference prediction from self-reports using multiple EEG measures and machine learning. International Journal of Research in Marketing, 38(3), 770-791. https://doi.org/10.1016/j.ijresmar.2020.10.005
- Hartmann, J., Heitmann, M., Schamp, C., & Netzer, O. (2019). The power of brand selfies in consumer-generated brand images. Columbia Business School Research Paper, 1-57. Access address: https://ssrn.com/abstract=3354415
- Herhausen, D., Bernritter, S. F., Ngai, E. W., Kumar, A., & Delen, D. (2024). Machine learning in marketing: Recent progress and future research directions. Journal of Business Research, 170, 114254. https://doi.org/10.1016/j.jbusres.2023.114254
- Huang, D., & Luo, L. (2016). Consumer preference elicitation of complex products using fuzzy support vector machine active learning. Marketing Science, 35(3), 445-464. https://doi.org/10.1287/mksc.2015.0946
- Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the academy of marketing science, 49, 30-50. https://doi.org/10.1007/s11747-020-00749-9
- Kakatkar, C., & Spann, M. (2019). Marketing analytics using anonymised and fragmented tracking data. International Journal of Research in Marketing, 36(1), 117-136. https://doi.org/10.1016/j.ijresmar.2018.10.001
- Kaponis, A., & Maragoudakis, M. (2022). Data Analysis in Digital Marketing using Machine learning and Artificial Intelligence Techniques, Ethical and Legal Dimensions, State of the Art. In Proceedings of the 12th Hellenic Conference on Artificial Intelligence (pp. 1-9). https://doi.org/10.1145/3549737.3549756
- Kawaf, F. (2019). Capturing digital experience: The method of screencast videography. International Journal of Research in Marketing, 36(2), 169-184. https://doi.org/10.1016/j.ijresmar.2018.11.002
- Kim, J., Kim, H., & Geum, Y. (2023). How to succeed in the market? Predicting startup success using a machine learning approach. Technological Forecasting and Social Change, 193, 122614. https://doi.org/10.1016/j.techfore.2023.122614
- Kumar, N. S. T., & Reddy, D. S. (2021). Bank marketing data classification using machine learning algorithms. Central Asian Journal of Mathematical Theory And Computer Sciences, 2(9), 31-36. Access address: https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/101
- Kumar, T. S. (2020). Data mining-based marketing decision support system using a hybrid machine learning algorithm. Journal of Artificial Intelligence, 2(03), 185-193. https://doi.org/10.36548/jaicn.2020.3.006
- Lahbabi, Y., Raki, S., Chakir Lamrani, H., & Dehbi, S. (2021). Machine learning in digital marketing. MENACIS2021. 28. Access address: https://aisel.aisnet.org/menacis2021/28
- Lee, K., Park, J., Kim, I., & Choi, Y. (2018). Predicting movie success with machine learning techniques: ways to improve accuracy. Information Systems Frontiers, 20, 577-588. https://doi.org/10.1007/s10796-016-9689-z
- Li, X., Shi, M., & Wang, X. S. (2019). Video mining: Measuring visual information using automatic methods. International Journal of Research in Marketing, 36(2), 216-231. https://doi.org/10.1016/j.ijresmar.2019.02.004
- Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. https://doi.org/10.3390/s18082674
- Lin, R. (2024, May). Brand Digital Marketing Based on Machine Learning Classification Algorithm. In 2024 5th International Conference for Emerging Technology (INCET) (pp. 1-5). IEEE. doi: 10.1109/INCET61516.2024.10593648
- Liu, J., & Toubia, O. (2018). A semantic approach for estimating consumer content preferences from online search queries. Marketing Science, 37(6), 930-952. https://doi.org/10.1287/mksc.2018.1112
- Liu, X., Lee, D., & Srinivasan, K. (2019). Large-scale cross-category analysis of consumer review content on sales conversion leveraging deep learning. Journal of Marketing Research, 56(6), 918-943. https://doi.org/10.1177/0022243719866690
- Liu, Y., & Yang, S. (2022). Application of Decision Tree‐Based Classification Algorithm on Content Marketing. Journal of Mathematics, 2022(1), 6469054. https://doi.org/10.1155/2022/6469054
- Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481-504. https://doi.org/10.1016/j.ijresmar.2020.04.005
- Ma, L., Sun, B., & Zhang, K. (2019). Image network and interest group– A heterogeneous network embedding approach to analyse social curation on Pinterest. working paper. Access address: https://www-2.rotman.utoronto.ca/userfiles/seminars/marketing/files/PinterestNetworkEmbedding_MaSunZhang_2019.pdf
- Malik, N., Singh, P. V., & Srinivasan, K. (2019). A dynamic analysis of beauty premium. Available at SSRN 3208162. Access address: https://ssrn.com/abstract=3208162
- Miklosik, A., & Evans, N. (2020). Impact of big data and machine learning on digital transformation in marketing: A literature review. Ieee. Access, 8, 101284-101292. doi: 10.1109/ACCESS.2020.2998754
- Miklosik, A., Kuchta, M., Evans, N., & Zak, S. (2019). Towards the adoption of machine learning-based analytical tools in digital marketing. Ieee Access, 7, 85705-85718. Access address: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8746184
- Min, S., So, K. K. F., & Jeong, M. (2021). Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model. In Future of tourism marketing (pp. 2-15). Routledge. Access address: https://www.cabidigitallibrary.org/doi/full/10.5555/20193387047
- Misra, K., Schwartz, E. M., & Abernethy, J. (2019). Dynamic online pricing with incomplete information using multiarmed bandit experiments. Marketing Science, 38(2), 226-252. https://doi.org/10.1287/mksc.2018.1129
- Misra, M., Yadav, A. P., & Kaur, H. (2018). Stock market prediction using machine learning algorithms: a classification study. In 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE) (pp. 2475-2478). IEEE. doi: 10.1109/ICRIEECE44171.2018.9009178
- Modak, C., Ghosh, S. K., Sarkar, M. A. I., Sharif, M. K., Arif, M., Bhuiyan, M., ... & Devi, S. (2024). Machine Learning Model in Digital Marketing Strategies for Customer Behaviour: Harnessing CNNs for Enhanced Customer Satisfaction and Strategic Decision-Making. Journal of Economics, Finance and Accounting Studies, 6(3), 178-186. https://doi.org/10.32996/jefas.2024.6.3.14
- Nagaraj, P., Nani, K., Krishna, E. T., Reddy, K. A. K., Sekar, R. R., & Rajkumar, T. D. (2023, December). Customer Sale Analysis and Classification Using Machine Learning Algorithm. In 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI) (pp. 1-5). IEEE. doi: 10.1109/ICDSAAI59313.2023.10452665
- Ngai, E. W., & Wu, Y. (2022). Machine learning in marketing: A literature review, conceptual framework, and research agenda. Journal of Business Research, 145, 35-48. https://doi.org/10.1016/j.jbusres.2022.02.049
- Nikolajeva, A., & Teilans, A. (2021). Machine Learning Technology Overview In Terms Of Digital Marketing And Personalization. ECMS, 125-130. Access address: https://www.researchgate.net/profile/Artis-Teilans/publication/352032253_Machine_Learning_Technology_Overview_In_Terms_Of_Digital_Marketing_And_Personalization/links/65963c5b2468df72d3f96319/Machine-Learning-Technology-Overview-In-Terms-Of-Digital-Marketing-And-Personalization.pdf
- Nisar, T. M., & Yeung, M. (2018). Attribution modeling in digital advertising: An empirical investigation of the impact of digital sales channels. Journal of Advertising Research, 58(4), 399-413. https://doi.org/10.2501/JAR-2017-055
- Pan, C., Gao, Y., & Luo, Y. (2018). Machine learning prediction of companies' business success. CS229: Machine Learning, Fall, 35. Access address: https://cs229.stanford.edu/proj2018/report/88.pdf
- Panarese, A., Settanni, G., Vitti, V., & Galiano, A. (2022). Developing and preliminary testing of a machine learning-based platform for sales forecasting using a gradient boosting approach. Applied Sciences, 12(21), 11054. https://doi.org/10.3390/app122111054
- Pawłowski, M. (2022). Machine learning based product classification for ecommerce. Journal of Computer Information Systems, 62(4), 730-739. https://doi.org/10.1080/08874417.2021.1910880
- Rafieian, O., & Yoganarasimhan, H. (2021). Targeting and privacy in mobile advertising. Marketing Science, 40(2), 193-218. https://doi.org/10.1287/mksc.2020.1235
- Saba, N. S., Gandhi, R., Rajendran, S. R., & Abraham, N. D. (2023). Revolutionising digital marketing using machine learning. In Contemporary Approaches of Digital Marketing and the Role of Machine Intelligence (pp. 1-22). IGI Global. doi: 10.4018/978-1-6684-7735-9.ch001
- Salminen, J., V. Yoganathan, J. Corporan, B.J. Jansen, and S.G. Jung. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research 101: 203–217. https://doi.org/10.1016/j.jbusres.2019.04.018
- Sanisoglu, M., Burnaz, S., & Kaya, T. (2024). A gateway toward truly responsive customers: using the uplift modeling to increase the performance of a B2B marketing campaign. Journal of Marketing Analytics, 12(4), 909-924. https://doi.org/10.1057/s41270-023-00254-2
- Sharma, A., Poojitha, S., Saxena, A., Bhanushali, M. M., & Rawal, P. (2022). A conceptual analysis of machine learning towards digital marketing transformation. In 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) (pp. 313-316). IEEE. doi: 10.1109/IC3I56241.2022.10073416.
- Sharma, A., Srinivasulu, A., Barua, T., & Tiwari, A. (2021). Classification of Digital Marketing Targeted Data Using Machine Learning Techniques. In 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES) (pp. 1-6). IEEE. doi: 10.1109/TRIBES52498.2021.9751646
- Türk, A. (2023). Digital leadership role in developing business strategy suitable for digital transformation. Frontiers in psychology, 13, 1066180. https://doi.org/10.3389/fpsyg.2022.1066180
- Ullal, M. S., Hawaldar, I. T., Soni, R., & Nadeem, M. (2021). The Role of Machine Learning in Digital Marketing. SAGE Open, 11(4). https://doi.org/10.1177/21582440211050394
- Ullal, M. S., Hawaldar, I. T., Soni, R., & Nadeem, M. (2021). The role of machine learning in digital marketing. Sage Open, 11(4), 21582440211050394. https://doi.org/10.1177/215824402110503
- Van Giffen, B., Herhausen, D., & Fahse, T. (2022). Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. Journal of Business Research, 144, 93-106. https://doi.org/10.1016/j.jbusres.2022.01.076
- Yang, Y., Zhang, K., & Kannan, P. K. (2022). Identifying market structure: A deep network representation learning of social engagement. Journal of Marketing, 86(4), 37-56. https://doi.org/10.1177/00222429211033585
- Zaki, A. M., Khodadadi, N., Hong Lim, W., & Towfek, S. K. (2024). Predictive Analytics and Machine Learning in Direct Marketing for Anticipating Bank Term Deposit Subscriptions. American Journal of Business & Operations Research, 11(1). doi: https://doi.org/10.54216/AJBOR.110110
- Zhang, K., & Luo, X. (2019). Leveraging Deep-learning and Field Experiment Response Heterogeneity to Enhance Customer Targeting Effectiveness. ICIS 2019 Proceedings. 28. Access adress: https://aisel.aisnet.org/icis2019/data_science/data_science/28
- Zhang, M. (2022). Research on precision marketing based on consumer portrait from the perspective of machine learning. Wireless Communications and Mobile Computing, 2022(1), 9408690. https://doi.org/10.1155/2022/9408690
- Zhang, M., & Luo, L. (2023). Can consumer-posted photos serve as a leading indicator of restaurant survival? Evidence from Yelp. Management Science, 69(1), 25-50. Access address: https://ssrn.com/abstract=3108288
- Zhao, Y., Yu, Y., Li, Y., Han, G., & Du, X. (2019). Machine learning based privacy-preserving fair data trading in big data market. Information Sciences, 478, 449-460. https://doi.org/10.1016/j.ins.2018.11.028