Cilt 13 Sayı 3 (2025): Business & Management Studies: An International Journal
Makaleler

Kümeleme ve kantil yaklaşımıyla CO₂ emisyonlarının belirleyicileri: Seçilmiş ülkeler uygulaması

Tuğba Özyıldız
Öğr. Gör. Dr., Gaziantep Üniversitesi, Gaziantep, Türkiye
Selen Utlu Koçdemir
Öğr. Gör. Dr., Gaziantep Üniversitesi, Gaziantep, Türkiye
Okan Güleç
Arş. Gör., Gaziantep Üniversitesi, Gaziantep, Türkiye

Yayınlanmış 25.09.2025

Anahtar Kelimeler

  • Yenilenebilir Enerji, CO₂ Emisyonları, Kantil Regresyon, Kümeleme
  • Renewable Energy, CO₂ Emissions, Quantile Regression, Clustering

Nasıl Atıf Yapılır

Kümeleme ve kantil yaklaşımıyla CO₂ emisyonlarının belirleyicileri: Seçilmiş ülkeler uygulaması. (2025). Business & Management Studies: An International Journal, 13(3), 941-965. https://doi.org/10.15295/bmij.v13i3.2586

Nasıl Atıf Yapılır

Kümeleme ve kantil yaklaşımıyla CO₂ emisyonlarının belirleyicileri: Seçilmiş ülkeler uygulaması. (2025). Business & Management Studies: An International Journal, 13(3), 941-965. https://doi.org/10.15295/bmij.v13i3.2586

Öz

Çevresel kalite, küresel ölçekte sürdürülebilir kalkınma hedeflerine ulaşmada kritik bir unsur olarak öne çıkmaktadır. Bu çalışma, CO₂ emisyonlarının belirleyicilerini ekonomik büyüme, yenilenebilir enerji kullanımı, kentleşme, ticaret açıklığı ve doğrudan yabancı yatırımlar çerçevesinde incelemektedir. Yöntem olarak, k-ortalama kümeleme ile panel kantil regresyonun birlikte kullanılmıştır, böylelikle mevcut literatüre özgün bir katkı sağlamaktadır. Bu yaklaşım sayesinde, farklı emisyon düzeylerine sahip ülke gruplarında bağımsız değişkenlerin heterojen etkileri ayrıntılı biçimde analiz edilmekte ve yalnızca ortalama etkilerin ötesine daha derinlemesine bulgular elde edilmektedir. Panel kantil regresyon sonuçları, her bir bağımsız değişkenin CO₂ emisyonları üzerindeki etkisinin, ülkelerin benzerliklerine göre oluşturulmuş kümeler arasında anlamlı farklılıklar gösterdiğini ortaya koymaktadır. Bulgular, CO₂ emisyonlarının azaltılmasına yönelik enerji politikaları ve sürdürülebilir kalkınma stratejilerinin önemini vurgulamakta ve politika yapıcılara yeni bir perspektif sunmaktadır.

Referanslar

  1. Abbasi, M. A., Nosheen, M. & Rahman, U. H. (2023). An approach to the pollution haven and pollution halo hypotheses in Asian countries. Environmental Science and Pollution Research, 30, 49270–49289. https://doi.org/10.1007/s11356-023-25548-x
  2. Abbasi, K. R., Adedoyin, F. F., Abbas, J., & Hussain, K. (2021). The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renewable Energy, 180, 1439-1450.
  3. Acheampong, A. O., Dzator, J., & Savage, D. A. (2021). Renewable energy, CO2 emissions and economic growth in sub-Saharan Africa: Does institutional quality matter? Journal of Policy Modeling, 43(5), 1070-1093.
  4. Adebayo, T. S., Oladipupo, S. D., Adeshola, I., & Rjoub, H. (2022). Wavelet analysis of impact of renewable energy consumption and technological innovation on CO2 emissions: Evidence from Portugal. Environmental Science and Pollution Research, 29(16), 23887-23904.
  5. Akbar, A., Gul, A., Sohail, M., Hedvicakova, M., Haider, S.A., Ahmad, S. & Iqbal, S. (2024). Yenilenebilir ve yenilenemeyen enerji kaynaklarının CO2 emisyonu üzerindeki etkisi: SAARC'tan ampirik kanıtlar. Uluslararası Enerji Ekonomisi ve Politikası Dergisi, 14 (1), 141-149.
  6. Alam, M.B. & Hossain, M.S. (2024). Çin'in ekonomik büyümesi, yenilenebilir enerji kullanımı ve CO2 emisyonlarıyla ilgili araştırma ve geliştirme arasındaki bağlantıları araştırmak: Bir ARDL Sınır Testi Yaklaşımı. Teknolojik Tahmin ve Sosyal Değişim, 201, 123220
  7. Albulescu, C. T., Tiwari, A. K., Yoon, S. M., & Kang, S. H. (2019). FDI, income, and environmental pollution in Latin America: Replication and extension using panel quantiles regression analysis. Energy Economics, 84, 1-10. https://doi.org/10.1016/j.eneco.2019.104504
  8. Al Sayed, A. R. & Sek, S. K. (2013). Environmental Kuznets curve: Evidences from developed and developing economies. Applied Mathematical Sciences, 7(22), 1081-1092.
  9. Andrew, R. M. (2020). A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth System Science Data, 12(2), 1437-1465. https://doi.org/10.5194/essd-12-1437-2020
  10. Arvin, M. B., Pradhan, R. P., & Norman, N. R. (2015). Transportation intensity, urbanization, economic growth, and CO2 emissions in the G-20 countries. Utilities Policy, 35, 50-66. https://doi.org/10.1016/j.jup.2015.07.003
  11. Awan, A., Abbasi, K. R., Rej, S., Bandyopadhyay, A. & Lv, K. (2022). The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis. Renewable Energy, 189, 454-466.
  12. Aydoğan, B. & Vardar, G. (2020). Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries. International Journal of Sustainable Energy, 39(4), 335-348.
  13. Azam, M. & Qayyum Khan, A. (2016). Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries. Renewable and Sustainable Energy Reviews, 63, 556-567. http://dx.doi.org/10.1016/j.rser.2016.05.052
  14. Bargaoui, S. A., Liouane, N. & Nouri, F. Z. (2014). Environmental impact determinants: An empirical analysis based on the STIRPAT model. Procedia-Social and Behavioral Sciences, 109, 449-458.
  15. Basel, S., Gopakumar, K. U. & Rao, R. P. (2021). Classification of countries based on development indices by using K-means and grey relational analysis. GeoJournal, 3915–3933. https://doi.org/10.1007/s10708-021-10479-2
  16. Bashir, M. F. (2022). Discovering the evolution of Pollution Haven Hypothesis: A literatüre review and future research agenda. Environmental Science and Pollution Research, 29, 48210–48232. https://doi.org/10.1007/s11356-022-20782-1
  17. Bekun, F. V. (2022). Mitigating emissions in India: accounting for the role of real income, renewable energy consumption and investment in energy. International Journal of Energy Economics and Policy, 12(1), 188-192
  18. Bhattacharya, M., Churchill, S. A. & Paramati, S. R. (2017). The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renewable Energy, 111, 157-167.
  19. Canay, I. A. (2011). A simple approach to quantile regression for panel data. The Econometrics Journal, 14(3), 368-386. https://doi.org/10.1111/j.1368-423X.2011.00349.x
  20. Chen, C., Pinar, M. & Stengos, T. (2022). Renewable energy and CO2 emissions: New evidence with the panel threshold model. Renewable Energy, 194, 117-128.
  21. Chen, F., Jiang, G. & Kitila, G. M. (2021). Trade openness and CO2 emissions: The heterogeneous and mediating effects for the belt and road countries. Sustainability, 13(4), 1958. https://doi.org/10.3390/su13041958
  22. Chertow, M. R. (2000). The IPAT Equation and its variants. Journal of Industrial Ecology, 4(4), 13-27, https://doi.org/10.1162/10881980052541927
  23. Churchill, S. A., Inekwe, J., Ivanovski, K. & Smyth, R. (2018). The environmental Kuznets curve in the OECD: 1870–2014. Energy economics, 75, 389-399. https://doi.org/10.1016/j.eneco.2018.09.004
  24. Dale, G. (2014). Adam Smith's Green Thumb and Malthus's Three Horsemen: Cautionary Tales from Classical Political Economy. Journal of Economic Issues, 46(4), 859-879. https://doi.org/10.1080/13563467.2019.1598964
  25. Destek, M. A., Balli, E. & Manga, M. (2016). The relationship between CO2 emission, energy consumption, urbanization and trade openness for selected CEECs. Research in World Economy, 7(1), 52-58. https://doi.org/10.5430/rwe.v7n1p52
  26. Dietz, T. & Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human Ecology Review, 1(2), 277-300.
  27. Dinda, S. (2004). Environmental Kuznets curve hypothesis: A survey. Ecological Economics, 49(4), 431-455. https://doi.org/10.1016/j.ecolecon.2004.02.011
  28. Doğan, E. & Türkekul, B. (2016). CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. Environmental Science and Pollution Research, 23, 1203-1213.
  29. Fischer-Kowalski, M. & Amann, C. (2001). Beyond IPAT and Kuznets Curves: Globalization as a vital factor in analysing the environmental impact of socio-economic metabolism. Population and Environment, 23, 7-47. https://doi.org/10.1023/A:1017560208742
  30. Fu, Q., Álvarez-Otero, S., Sial, M. S., Comite, U., Zheng, P., Samad, S., & Oláh, J. (2021). Impact of renewable energy on economic growth and CO2 emissions—evidence from BRICS countries. Processes, 9(8), 1281.
  31. Fujii, E. (2019). What does trade openness measure? Oxford Bulletin of Economics and Statistics, 81(4), 868-888. https://doi.org/10.1111/obes.12275
  32. Gierałtowska, U., Asyngier, R., Nakonieczny, J. & Salahodjaev, R. (2022). Renewable energy, urbanization, and CO2 emissions: A global test. Energies, 15(9), 3390. https://doi.org/10.3390/en15093390
  33. Ginevičius, R., Lapinskienė, G. & Peleckis, K. (2017). The Evolution of the environmental Kuznets curve concept: The Review of the research. Panoeconomıcus, 64(1), 93,112. https://doi.org/10.2298/PAN150423012G
  34. Gollin, D., Jedwab, R. & Vollrath, D. (2015). Urbanization with and without industrialization. Journal of Economic Growth, 21, 35-70. DOI 10.1007/s10887-015-9121-4
  35. Halicioglu, F. (2009). An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy, 37(3), 1156-1164.
  36. Hickel, J. & Kallis, G. (2019). Is green growth possible? New Political Economy, 25(4), 469-486. https://doi.org/10.1080/13563467.2019.1598964
  37. Hossain, M. S. (2011). Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries. Energy Policy, 39(11), 6991-6999.
  38. Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., & Idroes, R. (2024). The dynamic impact of non-renewable and renewable energy on carbon dioxide emissions and ecological footprint in Indonesia. Carbon Research, 3(1), 35.
  39. Inglesi-Lotz, R., & Dogan, E. (2018). The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub-Saharan Africa’s Βig 10 electricity generators. Renewable Energy, 123, 36-43. https://doi.org/10.1016/j.renene.2018.02.041
  40. Iqbal, A., Tang, X., & Rasool, S. F. (2023). Investigating the nexus between CO2 emissions, renewable energy consumption, FDI, exports and economic growth: evidence from BRICS countries. Environment. Development and Sustainability, 25(3), 2234-2263.
  41. Işık, C., Bulut, U., Ongan, S., Islam, H. ve Irfan, M. (2024). Ekonomik büyümenin, yenilenebilir enerjinin, internet kullanımının ve mineral kiralarının CO2 emisyonlarını nasıl etkilediğini araştırmak: 27 OECD ülkesi için bir panel kantil regresyon analizi. Kaynaklar Politikası, 92, 105025.
  42. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. https://doi.org/10.1016/j.patrec.2009.09.011
  43. Jardón, A., Kuik, O., & Tol, R. S. (2017). Economic growth and carbon dioxide emissions: An analysis of Latin America and the Caribbean. Atmósfera, 30(2), 87-100. https://doi.org/10.20937/atm.2017.30.02.02.
  44. Jebli, M. B., Farhani, S., & Guesmi, K. (2020). Renewable energy, CO2 emissions and value added: Empirical evidence from countries with different income levels. Structural Change and Economic Dynamics, 53, 402-410.
  45. Jeon, H. (2022). CO2 emissions, renewable energy and economic growth in the US. The Electricity Journal, 35(7), 107170.
  46. Karaaslan, A., & Çamkaya, S. (2022). The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey. Renewable Energy, 190, 457-466
  47. Koop, G. & Tole L. (1999). Is there an environmental Kuznets curve for deforestation? Journal of Development Economics, 58(1), 231-244. https://doi.org/10.1016/S0304-3878(98)00110-2
  48. Lamarche, C. (2021). Quantile regression for panel data and factor models. In Oxford Research Encyclopedia of Economics and Finance. Erişim Adresi: https://doi.org/10.1093/acrefore/9780190625979.013.669
  49. Lau, L. S., Choong, C. K., Ng, C. F., Liew, F. M., & Ching, S. L. (2019). Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries. Economic Modelling, 77, 12-20.
  50. Li, B., & Haneklaus, N. (2021). The role of renewable energy, fossil fuel consumption, urbanization and economic growth on CO2 emissions in China. Energy Reports, 7, 783-791.
  51. Li, B., & Haneklaus, N. (2022). Reducing CO2 emissions in G7 countries: The role of clean energy consumption, trade openness and urbanization. Energy Reports, 8, 704-713.
  52. Li, W., Yang, G. & Li, X. (2019). Modeling the evolutionary nexus between carbon dioxide emissions and economic growth. Journal of Cleaner Production, 235, 1191-1202. https://doi.org/10.1016/j.jclepro.2019.01.100
  53. Lin, B., & Xu, B. (2018). Factors affecting CO2 emissions in China's agriculture sector: A quantile regression. Renewable and Sustainable Energy Reviews, 94, 15-27.
  54. Ma, B., & Ogata, S. (2024). Impact of urbanization on carbon dioxide emissions—evidence from 136 countries and regions. Sustainability, 16(18), 7878. https://doi.org/10.3390/su16187878
  55. Mahmood, N., Wang, Z., & Hassan, S. T. (2019). Renewable energy, economic growth, human capital, and CO2 emission: an empirical analysis. Environmental Science and Pollution Research, 26, 20619-20630.
  56. Maiti, S., & Agrawal, P. K. (2005). Environmental degradation in the context of growing urbanization: a focus on the metropolitan cities of India. Journal of Human Ecology, 17(4), 277-287.
  57. Martínez-Zarzoso, I., & Maruotti, A. (2011). The impact of urbanization on CO2 emissions: evidence from developing countries. Ecological Economics, 70(7), 1344-1353. https://doi.org/10.1016/j.ecolecon.2011.02.009
  58. Murshed, M., Saboori, B., Madaleno, M., Wang, H., & Doğan, B. (2022). Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions: the role of economic complexity in the G7 countries. Renewable Energy, 190, 664-674.
  59. Namahoro, J. P., Wu, Q., Zhou, N., & Xue, S. (2021). Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels. Renewable and Sustainable Energy Reviews, 147, 111233.
  60. Narayan, P. K., Saboori, B., & Soleymani, A. (2016). Economic growth and carbon emissions. Economic Modelling, 53, 388-397.
  61. Nathaniel, S. P., Alam, M. S., Murshed, M., Mahmood, H., & Ahmad, P. (2021). The roles of nuclear energy, renewable energy, and economic growth in the abatement of carbon dioxide emissions in the G7 countries. Environmental Science and Pollution Research, 28(35), 47957-47972.
  62. Pata, U. K. (2018). The influence of coal and noncarbohydrate energy consumption on CO2 emissions: revisiting the environmental Kuznets curve hypothesis for Turkey. Energy, 160, 1115-1123.
  63. Pata, U. K., Dam, M. M., & Kaya, F. (2023). How effective are renewable energy, tourism, trade openness, and foreign direct investment on CO2 emissions? An EKC analysis for ASEAN countries. Environmental Science and Pollution Research, 30(6), 14821-14837.
  64. Popat, S. K., & Emmanuel, M. (2014). Review and comparative study of clustering techniques. International Journal of Computer Science and Information Technologies, 5(1), 805-812.
  65. Rahman, M. M., Alam, K., & Velayutham, E. (2022). Reduction of CO2 emissions: The role of renewable energy, technological innovation and export quality. Energy Reports, 8, 2793-2805.
  66. Raihan, A. (2023). The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus, 9, 100180.
  67. Raihan, A., & Tuspekova, A. (2022). The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: New insights from Peru. Energy Nexus, 6, 100067.
  68. Ren, S., Yuan, B., Ma, X., & Chen, X. (2014). The impact of international trade on China׳ s industrial carbon emissions since its entry into WTO. Energy Policy, 69, 624-634.
  69. Sadorsky, P. (2014). The effect of urbanization on CO2 emissions in emerging economies. Energy economics, 41, 147-153.
  70. Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Jabran, M. A. (2016). How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renewable and Sustainable Energy Reviews, 57, 83-93.
  71. Shahbaz, M., Nasreen, S., Ahmed, K. & Hammoudeh, S. (2017). Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels. Energy Economics, 61, 221-232. https://doi.org/10.1016/j.eneco.2016.11.008
  72. Sharma, S. S. (2011). Determinants of carbon dioxide emissions: Empirical evidence from 69 countries. Applied Energy, 88(1), 376-382.
  73. Shafiei, S., & Salim, R. A. (2014). Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: a comparative analysis. Energy Policy, 66, 547-556.
  74. Shahnazi, R. & Shabani, Z. D. (2021). The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU. Renewable Energy, 169, 293-307.
  75. Squalli, J. & Wilson, K. (2011). A new measure of trade openness. The World Economy, 34(10), 1745-1770. https://doi.org/10.1111/j.1467-9701.2011.01404.x
  76. Stern, D. I. (2004). The Rise and fall of the environmental Kuznets curve. World Development, 32(8), 1419-1439. https://doi.org/10.1016/j.worlddev.2004.03.004
  77. Şimşek, A. İ., & Bulut, E. (2024). Nonlinear relationships between the participation index and key financial assets: A quantile regression analysis. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17(3), 390-401.
  78. Talaat, M., Farahat, M. A. & Elkholy, M. H. (2019). Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies. Energy, 170, 668-682. https://doi.org/10.1016/j.energy.2018.12.171
  79. Unruh, G. C. (2000). Understanding carbon lock-in. Energy Policy, 28(12), 817-830. https://doi.org/10.1016/S0301-4215(00)00070-7
  80. Uttara, S., Bhuvandas, N. & Aggarwal, V. (2012). Impacts of urbanization on environment. IJREAS, 2(2), 1637-1645.
  81. Vo, D. H., Ho, C. M., & Vo, A. T. (2023). Trade openness, financial development, and urbanization in the renewable energy-growth-environment nexus. Energy Sources, Part B: Economics, Planning, and Policy, 18(1), 2240784. https://doi.org/10.1080/15567249.2023.2240784
  82. Wen, L., Cao, Y., & Weng, J. (2015). Factor decomposition analysis of China's energy-related CO2 emissions using extended STIRPAT Model. Polish Journal of Environmental Studies, 24(5).
  83. Xu, B., & Lin, B. (2023). Assessing the green energy development in China and its carbon reduction effect: using a quantile approach. Energy Economics, 126, 106967. https://doi.org/10.1016/j.eneco.2023.106967
  84. Yao, X., Kou, D., Shao, S., Li, X., Wang, W., & Zhang, C. (2018). Can urbanization process and carbon emission abatement be harmonious? New evidence from China. Environmental Impact Assessment Review, 71, 70-83. https://doi.org/10.1016/j.eiar.2018.04.005
  85. York, R., Rosa, E. A. & Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3), 351-365. https://doi.org/10.1016/S0921-8009(03)00188-5
  86. You, Z., Li, L., & Waqas, M. (2024). How do information and communication technology, human capital and renewable energy affect CO2 emission; new insights from BRI countries. Heliyon, 10(4).
  87. Zafar, M. W., Mirza, F. M., Zaidi, S. A. H., & Hou, F. (2019). The nexus of renewable and nonrenewable energy consumption, trade openness, and CO2 emissions in the framework of EKC: evidence from emerging economies. Environmental Science and Pollution Research, 26, 15162-15173.
  88. Zakarya, G. Y., Mostefa, B., Abbes, S. M., & Seghir, G. M. (2015). Factors affecting CO2 emissions in the BRICS countries: A panel data analysis. Procedia Economics and Finance, 26, 114-125. https://doi.org/10.1016/S2212-5671(15)00890-4
  89. Zhou, R., Guan, S., & He, B. (2025). The Impact of trade openness on carbon emissions: Empirical evidence from emerging countries. Energies, 18(3), 697. https://doi.org/10.3390/en18030697
  90. Zuhroh, I., Rofik, M., & Echchabi, A. (2021). Banking stock price movement and macroeconomic indicators: k-means clustering approach. Cogent Business & Management, 8(1), 1980247.Finance, 26, 114-125. https://doi.org/10.1080/23311975.2021.1980247