Mahmut BAKIR
Anadolu Üniversitesi, Sosyal Bilimler Enstitüsü
Anadolu Üniversitesi, İşletme Fakültesi

Published 2019-01-03

How to Cite

BAKIR, M., & ALPTEKİN, N. (2019). A NEW APPROACH IN SERVICE QUALITY ASSESSMENT: AN APPLICATION ON AIRLINES THROUGH CODAS METHOD. Business & Management Studies: An International Journal, 6(4), 1336–1353. https://doi.org/10.15295/bmij.v6i4.409


In the last four decades in which the air transport sector has entered into a major development process, airlines have focused on improving their service performance in order to gain a competitive advantage. While different approaches are being used to measure the quality perception for the services, the use of Multi-Criteria Decision Making (MCDM) methods has become prominent in recent years. In this study, it is aimed to bring a new approach to the evaluation of service quality in firms by focusing on the air transport sector. In this study, one of the current methods, the CODAS method is used. The data set of 11 airlines, which are evaluated in terms of service quality performances according to 7 criteria, are analyzed. Sensitivity analysis is also performed to measure the stability of the results after the application.


Download data is not yet available.


  1. Badi, İ. A., Abdulshahed, A. M., & Shetwan, A. G. (2018a). A case study of supplier selection for a steelmaking company in Libya by using the Combinative Distance-Based Assessment (CODAS) Model. Decision Making: Applications in Management and Engineering, 1(1), 1-12.
  2. Badi, I., Ballem, M. A., & Shetwan, A. G. (2018b). Site selection of desalination plant in Libya by using Combinative Distance-based Assessment (CODAS) Method. International Journal for Quality Research, 12(3), 609-624.
  3. Bakır, M., & Atalık, Ö. (2018). Entropi ve Aras Yöntemleriyle Havayolu İşletmelerinde Hizmet Kalitesinin Değerlendirilmesi. İşletme Araştırmaları Dergisi, 10(1), 617-638.
  4. Bogicevic, V., Yang, W., Bujisic, M., & Bilgihan, A. (2017). Visual Data Mining: Analysis of Airline Service Quality Attributes. Journal of Quality Assurance in Hospitality & Tourism, 18(4), 509-530.
  5. Boltürk, E. (2018). Pythagorean fuzzy CODAS and its application to supplier selection in a manufacturing firm. Journal of Enterprise Information Management, 31(4), 550-564.
  6. Boltürk, E., & Karaşan, A. (2018). Interval valued neutrosophic CODAS method for renewable energy selection. J. Liu, J. Lu, Y. Xu, L. Martinez , & E. Kerre içinde, Data Science and Knowledge Engineering for Sensing Decision Support (s. 1026-1033). London: World Scientific Publishers.
  7. Chen, F. Y., & Chang, Y. H. (2005). Examining airline service quality from a process perspective. Journal of Air Transport Management, 11(2), 79-87.
  8. Chen, I. S. (2016). A combined MCDM model based on DEMATEL and ANP for the selection of airline service quality improvement criteria: A study based on the Taiwanese airline industry. Journal of Air Transport Management, 57, 7-18.
  9. Chen, Y. H., Tseng, M. L., & Lin, R. J. (2011). Evaluating the customer perceptions on in-flight service quality. African Journal of Business Management, 5(7), 2854-2864.
  10. Dahooei, J. H., Zavadskas, E. K., Vanaki, A. S., Firoozfar, H. R., & Ghorabaee, M. K. (2018). An Evaluation Model of Business Intelligence for Enterprise Systems with New Extension of CODAD (CODAS-IVIF). Economics and Management, 21(3), 171-187.
  11. Demir, H. H. (2011). Evaluation of service quality of airway companies giving domestic services in Turkey with fuzzy set approach. International Journal of Electronics, Mechanical and Mechatronics Engineering, 2(3), 233-239.
  12. Doganis, R. (2006). The Airline Business (2. b.). New York: Routledge.
  13. Eliiott, K. M., & Roach, D. W. (1993). Service quality in the airline industry: Are carriers getting an unbiased evaluation from consumers? Journal of Professional Services Marketing, 9(2), 71-82.
  14. Ghorabaee, M. K., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A New Combinative Distance-Based Assessment (CODAS) Method For Multi-Criteria Decision Making. Economic Computation and Economic Cybernetics Studies and Research, 3(50), 25-44.
  15. Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Hooshmand, R., & Antucheviciene, J. (2017a). Fuzzy Extension of The CODAS Method For Multi-Criteria Market Segment Evalution. Journal of Business Economics and Management, 18(1), 1-19.
  16. Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017b). A new hybrid simulation-based assignment approach for evaluating airlines with multiple service quality criteria. Journal of Air Transport Management, 63, 45-60.
  17. Gilbert , D., & Wong, R. (2003). Passenger Expectations and Airline Services: A Hong Kong Based Study. Tourism Management, 24(5), 519-532.
  18. Gourdin, K. (1988). Bringing quality back to commercial air travel. Transportation Journal, 27(3), 23-29.
  19. Grönroos, C. (1984). A service quality model and its marketing implications. European Journal of Marketing, 18(4), 36-44.
  20. Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35-47.
  21. Gürsoy, D., Chen, M. H., & Kim, H. J. (2005). The US airlines relative positioning based on attributes of service quality. Tourism Management, 26(1), 57-67.
  22. Haghighat, N. (2017). Airline service quality evaluation: A review on concepts and models. Economics, Management and Sustainability, 2(2), 31-47.
  23. IATA. (2017). World Air Transport Statistics . IATA.
  24. Kazançoğlu, Y., & Kazançoğlu, İ. (2013). Benchmarking service quality performance of airlines in Turkey. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 8(1), 59-91.
  25. Kuo, M. S. (2011). A novel interval-valued fuzzy MCDM method for improving airlines’ service quality in Chinese cross-strait airlines. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1177-1193.
  26. Kuo, M. S., & Liang, G. S. (2011). Combining VIKOR with GRA techniques to evaluate service quality of airports under fuzzy environment. Expert Systems with Applications, 38(3), 1304-1312.
  27. Li, W., Yu, S., Pei, H., Zhao, C., & Tian, B. (2017). A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality. Journal of Air Transport Management, 60, 49-64.
  28. Liou, J. J., & Tzeng, G. H. (2007). A non-additive model for evaluating airline service quality. Journal of Air Transport Management, 13(3), 131-138.
  29. Liou, J. J., Hsu, C. C., Yeh, W. C., & Lin, R. H. (2011a). Using a modified grey relation method for improving airline service quality. Tourism Management, 32(6), 1381-1388.
  30. Liou, J. J., Tsai, C. Y., Lin, R. H., & Tzeng, G. H. (2011b). A modified VIKOR multiple-criteria decision method for improving domestic airlines service quality. Journal of Air Transport Management, 17(2), 57-61.
  31. Mardani, A., Jusoh, A., Zavadskas, E. K., Khalifah, Z., & Nor, K. M. (2015). Application of multiple-criteria decision-making techniques and approaches to evaluating of service quality: a systematic review of the literature. Journal of Business Economics and Management, 16(5), 1034-1068.
  32. Mathew, M., & Sahu, S. (2018). Comparison of new multi-criteria decision making methods for matiral handling equipment selection. Management Science Letters, 8(3), 139-150.
  33. Milosavljević, M., Bursaća, M., & Tričković, G. (2018). Selection of the railroad container terminal in Serbia based on multi criteria decision-making methods. Decision Making: Applications in Management and Engineering, 1(2), 1-15.
  34. Nejati, M., & Shafaei, A. (2009). Ranking airlines’ service quality factors using a fuzzy approach: study of the Iranian society. International Journal of Quality and Reliability Management, 26(3), 247-260.
  35. Odabaşı, Y., & Barış, G. (2007). Tüketici Davranışı (7. b.). İstanbul: Medicat Kitapları.
  36. Orhan, G., & Gerede , E. (2013). A Study of the Strategic Responses of Turkish Airline Companies to the Deregulation in Turkey. Journal of Management Research, 5(4), 34-63.
  37. Ostrowski, P. L., O'Brien, T. V., & Gordon, G. L. (1993). Service Quality and Customer Loyalty in the Commercial Airline Industry. Journal of Travel Research, 32(3), 16-24.
  38. Önüt, S., Akbaş, S., & Yılmaz, G. (2008). The Comparison of Service Quality of Domestic Airlines in Turkey. Sigma, 25(4), 349-358.
  39. Pakdil, F., & Aydın, Ö. (2007). Expectations and perceptions in airline services: An analysis using weighted SERVQUAL scores. Journal of Air Transport Management, 13(4), 229-237.
  40. Pamučar, D., Badi, I., Sanja, K., & Obradović, R. (2018). A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies, 11(9), 1-25.
  41. Panchal, D., Chatterjee, P., Shukla, R. K., Choudhury, T., & Tamosaitiene, J. (2017). Integrated fuzzy AHP-CODAS framework for maintenance decision in urea fertilizer industry. Economic computation and economic cybernetics studies and research, 51, 179-196.
  42. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing, 64(1), 12-40.
  43. Park, J. W., Robertson, R., & Wu, C. L. (2006). The effects of individual dimensions of airline service quality: Findings from Australian domestic air passengers. Journal of Hospitality and Tourism Management, 13(2), 161-176.
  44. Peng, X., & Garg, H. (2018). Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Computers& Industrial Engineering, 119, 439-452.
  45. Perçin, S. (2018). Evaluating airline service quality using a combined fuzzy decision-making approach. Journal of Air Transport Management, 68, 48-60.
  46. Pirtini, S. (2010). Değer Pazarlaması. İ. Varinli, & K. Çatı içinde, Güncel Pazarlama Yaklaşımlarından Seçmeler (s. 57-74). Ankara: Detay Yayıncılık.
  47. Toosi, N. M., & Kohanali, R. A. (2011). The study of airline service quality in the Qeshm free zone by fuzzy logic. Journal of Mathematics and Computer Science, 2(1), 171-185.
  48. Triantaphyllou, E., Shu, B., Sanches, S. N., & Ray, T. (1998). Multi-Criteria Decision Making: An Operations Research Approach. J. G. Webster içinde, Encyclopedia of Electrical and Electronics Engineering (s. 175-186). New York: John Wiley& Sons.
  49. Tsafarakis, S., Kokotas, T., & Pantouvakis, A. (2018). A multiple criteria approach for airline passenger satisfaction measurement and service quality improvement. Journal of Air Transport Management(68), 61-75.
  50. Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism Management, 23(2), 107-115.
  51. Tunca, M. Z., Ömürbek, N., Cömert, H. G., & Aksoy, E. (2016). OPEC Ülkelerinin Performanslarının Çok Kriterli Karar Verme Yöntemlerinden Entropi ve MAUT ile Değerlendirilmesi. Süleyman Demirel Üniversitesi Vizyoner Dergisi(7), 1-12.
  52. Waguespack, B. P., & Rhoades, D. L. (2014). Twenty five years of measuring airline service quality or why is airline service quality only good when times are bad? Research in Transportation Business and Management, 10, 33-39.
  53. Wang, R. (2014). Beyond the Quality of Service: Exploring the Evaluation Criteria of Airlines. Industrial Engineering and Management Systems, 13(2), 221-230.
  54. Wang, R., Lin, Y. H., & Tseng, M. L. (2011). Evaluation of customer perceptions on airline service quality in uncertainty. Procedia-Social and Behavioral Sciences, 25, 419-437.