Cilt 13 Sayı 4 (2025): Business & Management Studies: An International Journal
Makaleler

Tek değişkenli tahminde tahmin yöntemlerinin karşılaştırılması: Türkiye çimento endüstrisi örneği

Selim Tüzüntürk
Doç. Dr., Bursa Uludağ Üniversitesi, Bursa, Türkiye
Biyografi
Fatma Sert Eteman
Dr. Öğr. Üyesi, Munzur Üniversitesi, Tunceli, Türkiye
Biyografi

Yayınlanmış 25.12.2025

Anahtar Kelimeler

  • Cement Production, Artificial Neural Networks, Winters' Model, ARIMA, Forecasting
  • Çimento Üretimi, Yapay Sinir Ağları, Winters Modeli, ARIMA, Tahmin

Nasıl Atıf Yapılır

Tek değişkenli tahminde tahmin yöntemlerinin karşılaştırılması: Türkiye çimento endüstrisi örneği. (2025). Business & Management Studies: An International Journal, 13(4), 2259-2276. https://doi.org/10.15295/bmij.v13i4.2650

Nasıl Atıf Yapılır

Tek değişkenli tahminde tahmin yöntemlerinin karşılaştırılması: Türkiye çimento endüstrisi örneği. (2025). Business & Management Studies: An International Journal, 13(4), 2259-2276. https://doi.org/10.15295/bmij.v13i4.2650

Öz

Bu çalışma, Türk çimento imalat sanayinde çimento üretimini tahmin etmek için bir yöntem bulmayı ve bu yöntemle çimento üretimini tahmin ederek gelecekteki üretim gelişimi hakkında bazı sonuçlar çıkarmayı amaçlamaktadır. Bu çalışmada kullanılan veri, Türk çimento sanayinin toplam aylık çimento üretimidir. Veriler, Ocak 2017'den Eylül 2024'e kadar 93 ayı kapsamaktadır. Oluşturulan modele yapay sinir ağı modelleme prosedürleri uygulanmış ve derin öğrenme araçları yardımıyla tahmin yapılmıştır. Tahminlerin performansı oldukça iyi olup, ağın genelleştirilebilir olduğu sonucuna varılmıştır. Sonuçlar, eğitilen ağdan elde edilen eşik değerleri ve ağırlıklar kullanılarak geliştirilen model ile aylık üretimlerin tahmin edilebileceğini göstermiştir. Aylık çimento tahminleri Aralık 2026'ya kadar yapılmıştır. Tek değişkenli zaman serisi verilerinin YSA'lar ile modellenmesinin başarısı, MAPE istatistikleri kullanılarak Winters ve SARIMA yöntemleri ile karşılaştırılarak doğrulanmıştır. En uygun tahmin yönteminin YSA olduğu bulunmuş ve bulgular tartışılmıştır.

Referanslar

  1. Abbasi, U., A. Khan, A. K., and Hanif, A. (2017). Forecasting cement stock prices using ARIMA model: A case study of flying cement industry. Science International, 29(5), 1039-1044.
  2. Abdi, H. (1994). A neural network primer. Journal of Biological Systems, 2(3), 247-281. https://doi.org/10.1142/S0218339094000179
  3. Aitcin, P. C. (2000). Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research, 30, 1349-1359. https://doi.org/10.1016/S0008-8846(00)00365-3
  4. Akgül, I. (2003). Geleneksel zaman serisi yöntemleri. İstanbul: Der Yayınları.
  5. Aljandali, A. (2017). Multivariate methods and forecasting with IBM SPSS statistics. London: Springer.
  6. Anderson, D., and McNeill, G. (1992). Artificial neural networks technology. A DACS State of the Art Report. Retrieved from: https://nzdr.ru/data/media/biblio/kolxoz/Cs/CsGn/Anderson%20D.,%20McNeill%20G.%20Artificial%20neural%20networks%20technology.%20DACS%20report%20(1992)(87s).pdf
  7. Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., and Khan, M. K. (2018). Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems, 42, 226. https://doi.org/10.1007/s10916-018-1088-1
  8. Bedi, J., and Toshniwal, D. (2019). Deep learning framework to forecast electricity demand. Applied Energy, 238, 1312-1326. https://doi.org/10.1016/j.apenergy.2019.01.113
  9. Bekun, F. V., Alola, A. A., Gyamfi, B. A., Kwakwa, P. A., and Uzuner, G. (2023). Econometrics analysis on cement production and environmental quality in European Union countries. International Journal of Environmental Science and Technology, 20, 4265-4280. https://doi.org/10.1007/s13762-022-04302-9
  10. Bildirici, M. E. (2019). Cement production, environmental pollution, and economic growth: Evidence from China and USA. Clean Technologies and Environmental Policy, 21(6), 783-793. https://doi.org/10.1007/s10098-019-01667-3
  11. Bildirici, M. E. (2020). The relationship between cement production, mortality rate, air quality, and economic growth for China, India, Brazil, Turkey, and the USA: MScBVAR and MScBGC analysis. Environmental Science and Pollution Research, 27(2), 2248-2263. https://doi.org/10.1007/s11356-019-06586-w
  12. Brockwell, P. J., and Davis, R. A. (2002). Introduction to time series and forecasting. New York: Springer.
  13. Cembureau. (2016). Cement, Concrete and the Circular Economy Report. Retrieved from: https://cembureau.eu/library/reports/
  14. Cembureau. (2023). Activity Report 2023. Retrieved from: https://cembureau.eu/library/reports/
  15. Cembureau. (2023). Trade Report 2022. Retrieved from: https://cembureau.eu/library/reports/
  16. Cembureau. (2024). Trade Report 2023. Retrieved from: https://cembureau.eu/library/reports/
  17. Cembureau. (2024). Trade Report for the First Six Months of 2024. Retrieved from: https://cembureau.eu/library/reports/
  18. Chatfield, C. (2000). Time series forecasting. USA: Chapman Hall/CRC.
  19. Cheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Liu, Y., Tao, S., and Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14(1), 8213. https://doi.org/10.1038/s41467-023-43660-x
  20. Contreras-Reyes, J. E., and Idrovo-Aguirre, B. J. (2020). Backcasting and forecasting time series using detrended cross-correlation analysis. Physica A: Statistical Mechanics and its Applications, 560, 125109. https://doi.org/10.1016/j.physa.2020.125109
  21. Çuhadar, M. (2020). A comparative study on modeling and forecasting tourism revenues: The case of Turkey. Advances in Hospitality and Tourism Research, 8(2), 235-255. https://doi.org/10.30519/ahtr.765394
  22. d’Aspremont, C., Encaoua, D., and Ponssard, J-P. (2000). Competition policy and game theory: reflections based on the cement industry case. In G. Norman and J-F. Thisse (Eds.), Market structure and competition policy: Game theoretical approaches. Cambridge: Cambridge University Press, 9-30.
  23. Deng, L., and Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197-387. http://dx.doi.org/10.1561/2000000039
  24. Demuth, H., Beale, M., De Jesus, O. and Hagan, M. (2008). Neural network toolbox user's guide. USA: The MathWorks, Inc.
  25. Drew, P. J., and Monson, J. R. T. (2000). Artificial neural networks. Surgery, 127(1), 3-11. https://doi.org/10.1067/msy.2000.102173
  26. Fışkın, C. S., and Cerit, A. G. (2019). Forecasting domestic shipping demand of cement: Comparison of SARIMAX, ANN and Hybrid SARIMAX-ANN. 4th International Conference on Computer Science and Engineering, Samsun, Turkey. https://doi.org/10.1109/UBMK.2019.8907210
  27. Fradinata, E., Sirivongpaisal, N., Suthummanon, S., and Suntiamorntut, W. (2014). ANN, ARIMA and MA time series model for forecasting in cement manufacturing industry: Case study at lafarge cement Indonesia. International Conference of Advanced Informatics: Concepts, Theory and Application, Bandung, Indonesia. https://doi.org/10.1109/ICAICTA.2014.7005912
  28. Ghaderi, A., Sanandaji, B. M., and Ghaderi, F. (2017). Deep forecast: Deep learning-based spatio-temporal forecasting. https://doi.org/10.48550/arXiv.1707.08110
  29. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. USA: MIT Press.
  30. Hagan, M. T., Demuth, H. B., Beale, M. H., and De Jesus, O. (2014). Neural network design. USA: Martin Hagan.
  31. Han, G., Sönmez, E. F., Avcı, S., and Aladağ, Z. (2022). Uygun normalizasyon tekniği ve yapay sinir ağları analizi ile otomobil satış tahminlemesi. İşletme Ekonomi ve Yönetim Araştırmaları Dergisi, 5(1), 19-46. https://doi.org/10.33416/baybem.1001149
  32. Haykin, S. (1999). Neural networks: A comprehensive foundation. USA: Prentice Hall.
  33. Haykin, S. (2008). Neural networks and learning machines. USA: Pearson.
  34. Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
  35. Ilbeigi, M., Ashuri, B., and Joukar, A. (2017). Time-Series analysis for forecasting asphalt-cement price. Journal of Management in Engineering, 33(1). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000477
  36. Imbabi, M. S., Carrigan, C., and McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194-216. https://doi.org/10.1016/j.ijsbe.2013.05.001
  37. Isa, D., Kalliman, V. P. i, and Lee, L. H. (2009). Using the self-organising map for clustering of text documents. Expert Systems with Applications, 36(5), 9584-9591. https://doi.org/10.1016/j.eswa.2008.07.082
  38. İslamoğlu, E. (2016). Aralık değerli zaman serileri öngörü yöntemlerinin karşılaştırılması. Türkiye: Alim Kitapları.
  39. Jain. A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31-44. https://doi.org/10.1109/2.485891
  40. Juliana, L. J. L., Lubis, A. P., and Lubis, I. A. (2023). Implementation of the least square method to forecast cement sales. Jurnal Ipteks Terapan, 17(1), 131-137. https://doi.org/10.22216/jit.v17i1
  41. Kamalov, F., Smail, L., and Gurrib, I. (2020). Stock price forecast with deep learning. International Conference on Decision Aid Sciences and Application, Sakheer, Bahrain. https://doi.org/10.48550/arXiv.2103.14081
  42. Kamaruddin, S. A., Ghani, N. A., and Ramli, N. M. (2012). Determining the best forecasting model of cement price index in Malaysia. IEEE Colloquium on Humanities, Science and Engineering, Kota Kinabalu, Malaysia. https://doi.org/10.1109/CHUSER.2012.6504369
  43. Khajah, M., Lindsey, R. V., and Mozer, M. C. (2016). How deep is knowledge tracing? https://doi.org/10.48550/arXiv.1604.02416
  44. Krenker, A., Bester, J., and Kos, A. (2011). Introduction to the artificial neural networks. In K. Suzuki (Ed.), Artificial neural networks – methodological advances and biomedical applications. India: InTech, 1-18.
  45. Kulaksizoglu, T. (2004). Measuring the effectiveness of competition policy: Evidence from the Turkish cement industry. Munich Personal RePEc Archive (MPRA), Paper No. 1092. https://mpra.ub.uni-muenchen.de/1092/
  46. Kumar, D. N., Raju, K. S., and Sathish, T. (2004). River flow forecasting using recurrent neural networks. Water Resources Management, 18(2), 143-161. https://doi.org/10.1023/B:WARM.0000024727.94701.12
  47. Li, G., Yang, Y., Li, S., Qu, X., Lyu, N., and Li, S. E. (2022). Decision making of autonomous vehicles in lane change scenarios: Deep reinforcement learning approaches with risk awareness. Transportation Research Part C: Emerging Technologies, 134(5). https://doi.org/10.1016/j.trc.2021.103452
  48. Liu, P., Chen, S. H., Yang, H. H., Hung, C. T., and Tsai, M. R. (2008). Application of artificial neural network and SARIMA chain to forecast demand. 4th International Conference on Natural Consumption, Jinan, China. https://doi.org/10.1109/ICNC.2008.893
  49. Longman Dictionary of contemporary English. 2003. England: Pearson Longman.
  50. Makridakis, S., Wheelwright, S. C., and Hyndman, R. J. (1997). Forecasting: Methods and applications. New York: John Wiley and Sons.
  51. McBride, M. E. (1981). The nature and source of economies of scale in cement production. Southern Economic Journal, 48(1), 105-115. https://doi.org/10.2307/1058601
  52. Mendes, R. F. S., Costa, K., Silva, F. L. C., Cordeiro, J., Vera-Tudela, C. R., and Pinto, R. (2023). Forecasting models for the electricity consumption of the cement industry in Brazil. Observatorio De La Economia Latino Americana, 21(7), 6016-6031. https://doi.org/10.55905/oelv21n7-011
  53. Norman, G. (1979). Economies of scale in the cement industry. Journal of Industrial Economics, 27(4), 317-337. https://doi.org/10.2307/2097956
  54. Padhan, P. C. (2012). Use of univariate time series models for forecasting cement productions in India. International Research Journal of Finance and Economics, 83, 167-179.
  55. Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models concepts and cases. New York: John Wiley and Sons.
  56. Polat, S., Kervancı, I. S., and Özceylan, E. (2024). Optimising production planning in cement manufacturing using SVR. Computational Intelligence and Machine Learning, 5(2), 6-11. https://doi.org/10.36647/CIML/05.02.A002
  57. Poudyal, L., and Adhikari, K. (2021). Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resources, Environment and Sustainability, 4, 1-5. https://doi.org/10.1016/j.resenv.2021.100024
  58. Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., and Wang, X. (2021). Deep learning-based weather prediction: A survey. Big Data Research, 23. https://doi.org/10.1016/j.bdr.2020.100178
  59. Rodrigues, F. A., and Joekes, I. (2011). Cement industry: Sustainability, challenges and perspectives. Environ Chem Lett., 9(2), 151-166. https://doi.org/10.1007/s10311-010-0302-2
  60. Schlorke, S., Tu, L., Stec, M., Mallagray, J. V., and Kaleem, H. (2020). The impact of COVID-19 on the cement industry. International Finance Corporation Report. Retrieved from: https://www.ifc.org/content/dam/ifc/doc/mgrt/202008-covid-19-impact-on-cement-industry.pdf
  61. Selim, T. H., and Salem, A. S. (2010). Global cement industry: Competitive and institutional frameworks. Munich Personal RePEc Archive (MPRA), Paper No. 24464. https://mpra.ub.uni-muenchen.de/24464/
  62. Singh, L. P., and Challa, R. T. (2016). Integrated forecasting using the discrete wavelet theory and artificial intelligence techniques to reduce the bullwhip effect in a supply chain. Global Journal of Flexible Systems Management, 17(2), 157-169. https://doi.org/10.1007/s40171-015-0115-z
  63. Sönmez, O., and Zengin, K. (2019). Yiyecek ve içecek işletmelerinde talep tahmini: Yapar sinir ağları ve regresyon yöntemleriyle bir karşılaştırma. Avrupa Bilim ve Teknoloji Dergisi, Özel Sayı, 302-308. https://doi.org/10.31590/ejosat.638104
  64. Supino, S., Malandrino, O., Testa, M., and Sica, D. (2016). Sustainability in the EU cement industry: The Italian and German experiences. Journal of Cleaner Production, 112, 430-442. https://doi.org/10.1016/j.jclepro.2015.09.022
  65. Syaharuddin, S., Fatmawati, F., and Suprajitno, H. (2022). The formula study in determining the best number of neurons in neural network backpropagation architecture with three hidden layers. Jurnal RESTI, 6(3), 397-402. https://doi.org/10.29207/resti.v6i3.4049
  66. Türk Cement. (2024). Retrieved from: https://www.turkcimento.org.
  67. Tüzemen, A., and Yıldız, Ç. (2018). Geleceğe yönelik tahminleme analizi: Türkiye çimento üretimi uygulaması. Journal of Management and Economics Research, 16(3), 162-177. https://doi.org/10.11611/yead.360164
  68. Uhrig R. E. (1995). Introduction to artificial neural networks. 21st Annual Conference on IEEE Industrial Electronics, Orlando, FL, USA. https://doi.org/10.1109/IECON.1995.483329
  69. Uwasu, M., Hara, K., and Yabar, H. (2014). World cement production and environmental implications. Environmental Development, 10, 36-47. https://doi.org/10.1016/j.envdev.2014.02.005
  70. Vujicic, T., Matijevic, T., Ljucovic, J., Balota, A., and Sevarac, Z. (2016). Comparative analysis of methods for determining number of hidden neurons in artificial neural network. Central European Conference on Information and Intelligent Systems, Varazdin, Croatia.
  71. Xu, C., Gong, Y., and Yan, G. (2023). Research on cement demand forecast and low carbon development strategy in Shandong province. Atmosphere, 14(2), 267. https://doi.org/10.3390/atmos14020267
  72. Walczak, S., and Cerpa, N. (2001). Artificial neural networks. In R. A. Meyers (Ed.), Encyclopedia of physical science technology. California: Academic Press, 631-645.
  73. Walton, T. (2009). Regulatory impact analysis: National emissions standards for hazardous air pollutants from the Portland cement manufacturing industry. Research Triangle Institute International Report. Retrieved from: https://www.epa.gov/sites/default/files/2020-07/documents/nonmetallic-minerals_ria_proposal-cement-neshap_2009-04.pdf
  74. Yaffee, R., and McGee, M. (2000). Introduction to time series analysis and forecasting. USA: Academic Press.
  75. Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, (pp. 1423-1447). https://doi.org/10.1109/5.784219
  76. Yao, K., Zweig, G., Hwang, M. Y., Shi, Y., and Yu, D. (2013). Recurrent neural networks for language understanding. https://doi.org/10.21437/Interspeech.2013-569
  77. Yazdanbakhsh, A. (2025). Forecasting trend changes of cement demand in the United States: An exploratory study. Results in Engineering, 25, 103859. https://doi.org/10.1016/j.rineng.2024.103859
  78. Yurtsever, M. (2022). LSTM yöntemi ile ekonomik göstergeler kullanılarak otomobil satış tahmini. Nevşehir Hacı Bayram Veli Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(3), 1481-1492. https://doi.org/10.30783/nevsosbilen.987093
  79. Yücesan, M. (2018). YSA, ARIMA ve ARIMAX yöntemleriyle satış tahmini: Beyaz eşya sektöründe bir uygulama. İşletme Araştırmaları Dergisi, 10(1), 689-706. https://doi.org/10.20491/isader.2018.414
  80. Yüksel, B. (2023). Zaman serilerinde talep tahmini. Yönetim Bilişim Sistemleri Ansiklopedisi, 11(2), 10-28.
  81. World Population Review. (2023). Retrieved from https://worldpopulationreview.com/country-rankings/cement-production-by-country.
  82. Zhai, J., Zhang, S., Chen, J., and He, Q. (2018). Autoencoder and its various variants. International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan. https://doi.org/10.1109/SMC.2018.00080
  83. Zhang, G., Patuwo, B. E., and Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14, 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7