Vol. 13 No. 3 (2025): Business & Management Studies: An International Journal
Articles

Sentiment analysis in FinTech: Trends and approaches in market, risk, and compliance

Büşra Özdenizci Köse
Assoc. Prof., Department of Management Information Systems, Gebze Technical University, Kocaeli, Türkiye
Bio

Published 2025-09-25

Keywords

  • FinTech, Financial Technology, Financial Intelligence, Natural Language Processing, Sentiment Analysis, Strategic Decision-Making
  • FinTech, Finansal Teknoloji, Finansal Zekâ, Doğal Dil İşleme, Duygu Analizi, Stratejik Karar Verme

How to Cite

Sentiment analysis in FinTech: Trends and approaches in market, risk, and compliance. (2025). Business & Management Studies: An International Journal, 13(3), 1279-1292. https://doi.org/10.15295/bmij.v13i3.2633

How to Cite

Sentiment analysis in FinTech: Trends and approaches in market, risk, and compliance. (2025). Business & Management Studies: An International Journal, 13(3), 1279-1292. https://doi.org/10.15295/bmij.v13i3.2633

Abstract

As the financial technology (FinTech) sector increasingly embraces data-driven strategies, sentiment analysis has emerged as a critical tool for extracting actionable insights from unstructured textual data. This study explores the strategic applications of sentiment analysis in FinTech, with a particular focus on its roles in market prediction, risk assessment, and regulatory compliance. Drawing on a systematic thematic analysis of the academic literature, this study synthesises how financial institutions utilise sentiment analysis to enhance decision-making, mitigate risks, and address evolving customer behaviours and regulatory demands. The findings indicate that sentiment analysis enables early detection of market trends, supports more nuanced credit evaluations, and strengthens compliance monitoring by uncovering behavioural patterns and emotional signals across multiple data sources. The study also discusses practical challenges—including data quality, integration issues, and model bias—that must be addressed to realise its full potential. This work contributes to the literature by providing a structured thematic framework and identifying underexplored application areas of sentiment analysis in the FinTech sector. Future research may extend this study by incorporating empirical testing of domain-specific sentiment models.

References

  1. Al-Qablan, T. A., Mohd Noor, M. H., Al-Betar, M. A., & Khader, A. T. (2023). A survey on sentiment analysis and its applications. Neural Computing and Applications, 35(29), 21567-21601.
  2. Ashta, A., & Herrmann, H. (2021). Artificial intelligence and fintech: An overview of opportunities and risks for banking, investments, and microfinance. Strategic Change, 30(3), 211-222.
  3. Bello, O. A. (2023). Machine learning algorithms for credit risk assessment: an economic and financial analysis. International Journal of Management, 10(1), 109-133.
  4. Bhatore, S., Mohan, L., & Reddy, Y. R. (2020). Machine learning techniques for credit risk evaluation: a systematic literature review. Journal of Banking and Financial Technology, 4(1), 111-138.
  5. Bhatt, P. C., & Chen, W. K. (2025). Identifying technology convergence across FinTech: an integrated approach of text mining and association rule mining. International Journal of Bank Marketing, 43(7), 1489-1512.
  6. Bollaert, H., Lopez-de-Silanes, F., & Schwienbacher, A. (2021). Fintech and access to finance. Journal of corporate finance, 68, 101941.
  7. Bredice, M., Formisano, A. V., Kullafi, S., & Palma, P. (2025). Access to credit and fintech: A lexicon-based sentiment analysis application on Twitter data. Research in International Business and Finance, 77, 102875.
  8. Campbell, D., Ansari, A., & Singh, V. V. (2024). Machine Learning in Fintech. In The Adoption of Fintech (pp. 206-217). Productivity Press.
  9. Cao, L. (2022). Ai in finance: challenges, techniques, and opportunities. ACM Computing Surveys (CSUR), 55(3), 1-38.
  10. Cao, L., Yang, Q., & Yu, P. S. (2021). Data science and AI in FinTech: An overview. International Journal of Data Science and Analytics, 12(2), 81-99.
  11. Clarke, V., & Braun, V. (2014). Thematic analysis. In Encyclopedia of critical psychology (pp. 1947-1952). Springer, New York, NY.
  12. Colianni, S., Rosales, S., & Signorotti, M. (2015). Algorithmic trading of cryptocurrency based on Twitter sentiment analysis. CS229 Project, 1(5), 1-4.
  13. Costola, M., Hinz, O., Nofer, M., & Pelizzon, L. (2023). Machine learning sentiment analysis, COVID-19 news and stock market reactions. Research in International Business and Finance, 64, 101881.
  14. Das, R., & Singh, T. D. (2023). Multimodal sentiment analysis: a survey of methods, trends, and challenges. ACM Computing Surveys, 55(13s), 1-38.
  15. Delgadillo, J., Kinyua, J., & Mutigwe, C. (2024). FinSoSent: Advancing Financial Market Sentiment Analysis through Pretrained Large Language Models. Big Data and Cognitive Computing, 8(8), 87.
  16. Du, K., Xing, F., & Cambria, E. (2023). Incorporating multiple knowledge sources for targeted aspect-based financial sentiment analysis. ACM Transactions on Management Information Systems, 14(3), 1-24.
  17. Du, K., Xing, F., Mao, R., & Cambria, E. (2024). Financial sentiment analysis: Techniques and applications. ACM Computing Surveys, 56(9), 1-42.
  18. Dwivedi, D. N., Wójcik, K., & Vemareddyb, A. (2021, September). Identification of key concerns and sentiments towards data quality and data strategy challenges using sentiment analysis and topic modeling. In Conference of the Section on Classification and Data Analysis of the Polish Statistical Association (pp. 19-29). Cham: Springer International Publishing.
  19. Faccia, A., McDonald, J., & George, B. (2023). NLP Sentiment Analysis and Accounting Transparency: A New Era of Financial Record Keeping. Computers, 13(1), 5.
  20. Fazil, A. W., Hakimi, M., & Shahidzay, A. K. (2023). A comprehensive review of bias in AI algorithms. Nusantara Hasana Journal, 3(8), 1-11.
  21. Fritz, D., & Tows, E. (2018). Text mining and reporting quality in German banks: A cooccurrence and sentiment analysis. Universal Journal of Accounting and Finance, 6(2), 54-81.
  22. George, A. S., & Baskar, T. (2024). Leveraging Big Data and Sentiment Analysis for Actionable Insights: A Review of Data Mining Approaches for Social Media. Partners Universal International Innovation Journal, 2(4), 39-59.
  23. Gephart, R. P., Cassell, C., & Cunliffe, A. L. (2018). Qualitative research as interpretive social science. The SAGE handbook of qualitative business and management research methods: History and traditions, 33-53.
  24. Hoang, D., & Wiegratz, K. (2023). Machine learning methods in finance: Recent applications and prospects. European Financial Management, 29(5), 1657-1701.
  25. Huang, H., Zavareh, A. A., & Mustafa, M. B. (2023). Sentiment analysis in e-commerce platforms: A review of current techniques and future directions. IEEE Access, 11, 90367-90382.
  26. Karanikola, A., Davrazos, G., Liapis, C. M., & Kotsiantis, S. (2023). Financial sentiment analysis: Classic methods vs. deep learning models. Intelligent Decision Technologies, 17(4), 893-915.
  27. Khan, S., Khan, H. U., Nazir, S., Albahooth, B., & Arif, M. (2024). Users sentiment analysis using artificial intelligence-based FinTech data fusion in financial organisations. Mobile Networks and Applications, 29(2), 477-488.
  28. Kim, K., Ryu, D., & Yu, J. (2022). Is a sentiment-based trading strategy profitable?. Investment Analysts Journal, 51(2), 94-107.
  29. Lu, Q., Sun, X., Long, Y., Gao, Z., Feng, J., & Sun, T. (2023). Sentiment analysis: Comprehensive reviews, recent advances, and open challenges. IEEE Transactions on Neural Networks and Learning Systems.
  30. Mehta, P., & Pandya, S. (2020). A review on sentiment analysis methodologies, practices and applications. International Journal of Scientific and Technology Research, 9(2), 601-609.
  31. Mienye, E., Jere, N., Obaido, G., Mienye, I. D., & Aruleba, K. (2024). Deep Learning in Finance: A survey of Applications and techniques. AI, 5(4), 2066-2091.
  32. Murinde, V., Rizopoulos, E., & Zachariadis, M. (2022). The impact of the FinTech revolution on the future of banking: Opportunities and risks. International review of financial analysis, 81, 102103.
  33. Nazareth, N., & Reddy, Y. V. R. (2023). Financial applications of machine learning: A literature review. Expert Systems with Applications, 219, 119640.
  34. Nguyen, D. K., Sermpinis, G., & Stasinakis, C. (2023). Big data, artificial intelligence and machine learning: A transformative symbiosis in favour of financial technology. European Financial Management, 29(2), 517-548.
  35. Palos-Sanchez, P. R., Chang-Tam, R. J., & Folgado-Fernández, J. A. (2025). The Role of Neobanks and FinTech in Sustainable Finance and Technology. The Customer/User Perspective for Entrepreneurs. Sustainable Technology and Entrepreneurship, 100109.
  36. Pandow, B. A. (2024). Revolutionizing Finance: The Impact of AI-Driven Innovations. In Navigating the Future of Finance in the Age of AI (pp. 1-24). IGI Global.
  37. Praghaadeesh, R., Maniappan, V., & Doss, S. (2024, July). Enhancing Algorithmic Trading Strategies with Sentiment Analysis: A Reinforcement Learning Approach. In 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC) (pp. 107-112). IEEE.
  38. Raghunathan, N., & Saravanakumar, K. (2023). Challenges and issues in sentiment analysis: A comprehensive survey. IEEE Access, 11, 69626-69642.
  39. Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence, machine learning, and deep learning for sentiment analysis in business to enhance customer experience, loyalty, and satisfaction. Available at SSRN 4846145.
  40. Ranjan, R., Sharma, K., & Kumar, A. (2025). Introduction to NLP in Finance: Sentiment Analysis and Risk Management. In Transformative Natural Language Processing: Bridging Ambiguity in Healthcare, Legal, and Financial Applications (pp. 75-100). Cham: Springer Nature Switzerland.
  41. Rao, T., & Srivastava, S. (2014). Twitter sentiment analysis: How to hedge your bets in the stock markets. In State of the art applications of social network analysis (pp. 227-247). Cham: Springer International Publishing.
  42. Rizinski, M., Peshov, H., Mishev, K., Chitkushev, L. T., Vodenska, I., & Trajanov, D. (2022). Ethically responsible machine learning in fintech. IEEE Access, 10, 97531-97554.
  43. Rizinski, M., Peshov, H., Mishev, K., Jovanovik, M., & Trajanov, D. (2024). Sentiment Analysis in Finance: From Transformers Back to eXplainable Lexicons (XLex). IEEE Access.
  44. Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., & Cuenca-Jiménez, P. M. (2023). A review on sentiment analysis from social media platforms. Expert Systems with Applications, 223, 119862.
  45. Sahu, S. K., Mokhade, A., & Bokde, N. D. (2023). An overview of machine learning, deep learning, and reinforcement learning-based techniques in quantitative finance: recent progress and challenges. Applied Sciences, 13(3), 1956.
  46. Sai, S., Arunakar, K., Chamola, V., Hussain, A., Bisht, P., & Kumar, S. (2025). Generative AI for finance: applications, case studies and challenges. Expert Systems, 42(3), e70018.
  47. Saxena, A., & Muneeb, S. M. (2024). Transforming Financial Services Through Hyper-Personalization: The Role of Artificial Intelligence and Data Analytics in Enhancing Customer Experience. In AI-Driven Decentralized Finance and the Future of Finance (pp. 19-47). IGI Global.
  48. Sharma, N. A., Ali, A. S., & Kabir, M. A. (2024). A review of sentiment analysis: tasks, applications, and deep learning techniques. International Journal of Data Science and Analytics, 1-38.
  49. Singh, D. K., Banik, E., Roy, P., & Pandit, R. (2025). Enhancing Customer Interactions in FinTech with NLP. In Intersecting Natural Language Processing and FinTech Innovations in Service Marketing (pp. 157-178). IGI Global Scientific Publishing.
  50. Sun, T., & Vasarhelyi, M. A. (2018). Embracing textual data analytics in auditing with deep learning. International Journal of Digital Accounting Research, 18.
  51. Taherdoost, H., & Madanchian, M. (2023). Artificial intelligence and sentiment analysis: A review in competitive research. Computers, 12(2), 37.
  52. Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A survey of sentiment analysis: Approaches, datasets, and future research. Applied Sciences, 13(7), 4550.
  53. Todd, A., Bowden, J., & Moshfeghi, Y. (2024). Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions. Intelligent Systems in Accounting, Finance and Management, 31(1), e1549.
  54. Udeh, E. O., Amajuoyi, P., Adeusi, K. B., & Scott, A. O. (2024). AI-Enhanced Fintech communication: Leveraging Chatbots and NLP for efficient banking support. International Journal of Management & Entrepreneurship Research, 6(6), 1768-1786.
  55. Wang, S., Qi, Y., Fu, B., & Liu, H. (2016). Credit risk evaluation based on text analysis. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 10(1), 1-11.
  56. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780.
  57. Whang, S. E., Roh, Y., Song, H., & Lee, J. G. (2023). Data collection and quality challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 32(4), 791-813.
  58. Yadav, A., & Vishwakarma, D. K. (2020). Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review, 53(6), 4335-4385.
  59. Yang, K., Cheng, Z., Li, M., Wang, S., & Wei, Y. (2024). Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy. Applied Energy, 353, 122102.
  60. Zhang, D., Xu, W., Zhu, Y., & Zhang, X. (2015, January). Can sentiment analysis help mimic decision-making process of loan granting? A novel credit risk evaluation approach using GMKL model. In 2015 48th Hawaii International Conference on System Sciences (pp. 949-958). IEEE.
  61. Zhang, W., & Skiena, S. (2010, May). Trading strategies to exploit blog and news sentiment. In Proceedings of the international AAAI conference on web and social media (Vol. 4, No. 1, pp. 375-378).