Cilt 13 Sayı 2 (2025): Business & Management Studies: An International Journal
Makaleler

İçgörüden eyleme: Pazarlamada artımlı modelleme ile öngörücü analitiğin gücü

Meltem Sanisoğlu
Dr., İstanbul Teknik Üniversitesi, İstanbul, Türkiye
Şebnem Burnaz
Prof. Dr., İstanbul Teknik Üniversitesi, İstanbul, Türkiye

Yayınlanmış 25.06.2025

Anahtar Kelimeler

  • Marketing Analytics, Prescriptive Analytics, Uplift Modelling
  • Pazarlama Analitiği, Öngörücü Analitik, Artımlı Modelleme

Nasıl Atıf Yapılır

İçgörüden eyleme: Pazarlamada artımlı modelleme ile öngörücü analitiğin gücü. (2025). Business & Management Studies: An International Journal, 13(2), 494-514. https://doi.org/10.15295/bmij.v13i2.2518

Nasıl Atıf Yapılır

İçgörüden eyleme: Pazarlamada artımlı modelleme ile öngörücü analitiğin gücü. (2025). Business & Management Studies: An International Journal, 13(2), 494-514. https://doi.org/10.15295/bmij.v13i2.2518

Öz

Bu çalışma, işletme yönetiminde ticari değer yaratarak daha hızlı ve etkili karar alınmasını sağlayan veri analitiğine odaklanarak işletmelerin bir öngörücü analitik yöntemi olan artımlı modellemeden yararlanmaları için değerli içgörüler sağlamayı amaçlamaktadır. Pazarlama alanında kullanılan analitik yaklaşımlara genel bir bakış sunularak veri analitiğinin modern işletme yönetimindeki önemi çeşitli örnekler ile ortaya konulmakta ve öngörücü analitik yöntemi olan artımlı modellemeye odaklanılmaktadır. İki model yaklaşımı, sınıf değişkeni dönüşümü ve doğrudan artımlı modelleme yöntemleri ayrıntılı olarak incelenerek işletmelerin artımlı modelleme kullanımı için yararlanmaları öngörülen veri toplama, hazırlık ve model performansı değerlendirme aşamaları sunulmaktadır. Sonuç olarak iş uygulamaları ve gelecekteki araştırma yönelimleri için önerilerde bulunulmakta ve çalışmanın sunduğu düşünülen temel katkıları hem akademi hem de endüstri açısından vurgulanmaktadır.

Referanslar

  1. Ajiga, D., Okeleke, P., Folorunsho, S., ve Ezeigweneme, C. (2024). Predictive analytics for market trends using AI: A study in consumer behavior. International Journal of Engineering Research Updates. doi: 10.53430/ijeru.2024.7.1.0032.
  2. Artun, O. ve Levin, D. (2015). Predictive marketing: Easy ways every marketer can use customer analytics and big data. New Jersey: John Wiley & Sons.
  3. Attaran, M. ve Attaran, S. (2018). Opportunities and challenges of implementing predictive analytics for competitive advantage. International Journal of Business Intelligence Research, 9(2), 1–26. doi:10.4018/ijbir.2018070101
  4. Awais, M., Hassan, S. U. ve Ahmed, A. (2021). Leveraging big data for politics: predicting general election of Pakistan using a novel rigged model. Journal of Ambient Intelligence and Humanized Computing, 12, 4305–4313 (2021). doi: 10.1007/s12652-019-01378-z
  5. Baier, D. ve Stöcker, B. (2022). Profit uplift modelling for direct marketing campaigns: approaches and applications for online shops. Journal of Business Economics, 92(4), 645-673. doi:10.1007/s11573-021-01068-3
  6. Börthas, L. ve Sjölander, J.K. (2020). Machine learning based prediction and classification for uplift modelling (Yüksek lisans tezi, KTH Royal Institute of Technology, İsveç) Erişim adresi: https://www.diva-portal.org/smash/get/diva2:1386196/FULLTEXT01.pdf
  7. Bradlow, E. T., Gangwar, M., Kopalle, P. ve Voleti, S. (2017). The role of big data and predictive analytics in retailing. Journal of Retailing, 93(1), 79–95. doi:10.1016/j.jretai.2016.12.004
  8. Cao, Y., Xu, C. ve Gu, H. (2017). Untangle customers’ incrementality using uplift modelling with a case study on direct marketing. MWSUG, Paper BF03. Erişim adresi: https://mwsug.org/proceedings/2017/BF/MWSUG-2017-BF03.pdf
  9. Charles, V., Garg, P., Gupta, N. ve Agarwal, M. (Eds.). (2023). Data analytics and business intelligence: Computational frameworks, practices, and applications. Boca Raton: CRC Press.
  10. Chen, S. (2024). Application and Effectiveness Evaluation of Business Data Analytics in Marketing Strategy. Frontiers in Business, Economics and Management. doi: 10.54097/qe8n6k67.
  11. Cooksey, R. (2020). Descriptive Statistics for Summarising Data. Illustrating Statistical Procedures: Finding Meaning in Quantitative Data, 61 - 139. doi:10.1007/978-981-15-2537-7_5.
  12. Cote, C. (2021, 2 Kasım). What is prescriptive analytics? 6 examples: HBS Online. [Blog yazısı]. Erişim adresi: https://online.hbs.edu/blog/post/prescriptive-analytics
  13. Çetintemel, U. (2018). Predictive analytics. Liu, L. ve Özsu, M.T. (Ed.), Encyclopedia of Database Systems, (s. 2782–2783) içinde. New York: Springer. doi:10.1007/978-1-4614-8265-9_80669
  14. De Caigny, A., Coussement, K., Verbeke, W., Idbenjra, K. ve Phan, M. (2021). Uplift modelling and its implications for B2B customer churn prediction: A segmentation-based modelling approach. Industrial Marketing Management, 99, 28-39. doi: 10.1016/j.indmarman.2021.10.001
  15. Detienne, K., & Detienne, D. (2017). Neural networks in strategic marketing: exploring the possibilities. Journal of Strategic Marketing, 25, 289 - 300. doi: 10.1080/0965254X.2015.1076881.
  16. Devriendt, F., Moldovan, D. ve Verbeke, W. (2018). A literature survey and experimental evaluation of the state-of-the-art in uplift modelling: A stepping stone toward the development of prescriptive analytics. Big Data, 6(1), 13–41. doi:10.1089/big.2017.0104
  17. Downie, N., & Starry, A. (2019). Descriptive and Inferential Statistics. Companion Encyclopedia of Psychology. doi: 10.4135/9781473920446.n5.
  18. Eckerson, W. W. (2007). Predictive analytics. Extending the Value of Your Data Warehousing Investment. TDWI Best Practices Report, 1, 1-36. Erişim adresi: http://download.101com.com/pub/tdwi/files/pa_report_q107_f.pdf
  19. Elkan, C. (2013). Predictive analytics and data mining (Vol. 600). San Diego: University of California.
  20. Engel, Y., Etzion, O. ve Feldman, Z. (2012, Temmuz). A basic model for proactive event-driven computing. Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems. doi: 10.1145/2335484.2335496
  21. Fan, S., Lau, R. Y. K. ve Zhao, J. L. (2015). Demystifying big data analytics for business intelligence through the lens of marketing mix. Big Data Research, 2(1), 28–32. doi:10.1016/j.bdr.2015.02.006
  22. Fergurson, R. (2020). Data-driven decision making via sales analytics: introduction to the special issue. Journal of Marketing Analytics. doi: 10.1057/s41270-020-00088-2.
  23. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M. ve Herrera, F. (2016). Big data pre-processing: methods and prospects. Big data analytics, 1, 1-22. doi:10.1186/s41044-016-0014-0.
  24. Gartner (2017). Forecast Snapshot: Prescriptive Analytics, Worldwide. Erişim adresi: https://www.gartner.com/en/documents/3698935
  25. Goldenberg, D., Albert, J., Bernardi, L. ve Estevez, P. (2020, Eylül). Free lunch! retrospective uplift modelling for dynamic promotions recommendation within roi constraints. Proceedings of the 14th ACM Conference on Recommender Systems (pp. 486-491). doi: 10.1145/3383313.3412215
  26. Goldenberg, D. ve Albert, J. (2022, Eylül). Personalising benefits allocation without spending money: Utilising uplift modelling in a budget constrained setup. Proceedings of the 16th ACM Conference on Recommender Systems (pp. 464-465). doi: 10.1145/3523227.3547381
  27. Gubela, R. M. ve Lessmann, S. (2021). Uplift modelling with value-driven evaluation metrics. Decision Support Systems, 150, 113648. doi: 10.1016/j.dss.2021.113648
  28. Guelman, L. (2014). Uplift: Uplift modelling. R package version 0.3.5. Erişim adresi: https:// cran.r- proje ct. org/ package=uplift.
  29. Guelman, L., Guillén, M. ve Pérez-Marín, A. M. (2012, Mayıs). Random forests for uplift modelling: an insurance customer retention case. International conference on modelling and simulation in engineering, economics and management (pp. 123-133). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-30433-0_13
  30. Guelman, L., Guillen, M. ve Perez-Marin, A.M. (2015). Uplift random forests. Cybernetics and Systems, 46 (3–4), 230–248. doi: 10/1080/01969722.2015.1012892
  31. Gutierrez, P. ve Gerardy, J.Y. (2017). Causal inference and uplift modelling: A review of literature. International conference on predictive applications and APIs, 1-13. Cambridge:PMLR.
  32. Hansotia, B. ve Rukstales, B. (2002). Incremental value modelling. Journal of Interactive Marketing, 16(3), 35-46. doi: 10.1002/dir.10035
  33. Hauser, W. J. (2007). Marketing analytics: the evolution of marketing research in the twenty‐first century. Direct Marketing: An International Journal, 1(1), 38-54. doi: 10/1108/17505930710734125
  34. Hu, J. (2023). Customer feature selection from high-dimensional bank direct marketing data for uplift modelling. Journal of Marketing Analytics, 11(2), 160-171. doi: 10.1057/s41270-022-00160-z
  35. Hu, C., & Wen, H. (2024). The Studies Based on the Application of Predictive Analytics Models. Advances in Economics, Management and Political Sciences. doi: 10.54254/2754-1169/2024.ga18543.
  36. Hurwitz, J., Kaufman, M., Bowles, A., Nugent, A., Kobielus, J. G. ve Kowolenko, M. D. (2015). Cognitive computing and big data analytics (Vol. 288). Indianapolis: Wiley.
  37. Hwang, K. ve Chen, M. (2017). Big-data analytics for cloud, IoT and cognitive computing. John Wiley & Sons.
  38. Investopedia (2023). Descriptive analytics: What they are and related terms. Erişim adresi: https://www.investopedia.com/terms/d/descriptive-analytics.asp#:~:text=Descriptive%20analytics%20is%20an%20important,intelligence%20a%20company%20will%20use
  39. James, G., Witten, D., Hastie, T. ve Tibshirani, R. (eds.). (2013). An introduction to statistical learning: with applications in R. New York: Springer.
  40. Jaskowski, M. ve Jaroszewicz, S. (2012, Haziran). Uplift modelling for clinical trial data. ICML workshop on clinical data analysis (Vol. 46, pp. 79-95). Erişim adresi: https://people.cs.pitt.edu/~milos/icml_clinicaldata_2012/Papers/Oral_Jaroszewitz_ICML_Clinical_2012.pdf
  41. Jeyanthi, P.M., Choudhury, T., Hack-Polay, D., Singh, T.P. ve Abujar, S. (2022). Decision Intelligence Analytics and the Implementation of Strategic Business Management, Springer. doi: 10.1007/978-3-030-82763-2.
  42. Kalaian, S., Kasim, R., ve Kasim, N. (2017). A Conceptual and Pragmatic Review of Regression Analysis for Predictive Analytics. , 1761-1776. doi: 10.4018/978-1-5225-0654-6.CH014.
  43. Kane, K., Lo, S. ve Zheng, J. (2014). Mining for the truly responsive customers and prospects using true-lift modelling: comparison of new and existing methods. Journal of Marketing Analytics, 2, 218-238. doi: 10.1057/jma.2014.18
  44. Karlsson, H. (2019). Uplift modelling: identifying optimal treatment group allocation and whom to contact to maximise return on investment (Yüksek lisans tezi). Erişim adresi: https://www.diva-portal.org/smash/get/diva2:1328437/FULLTEXT01.pdf
  45. Kumar, V. ve Garg, M. L. (2018). Predictive analytics: a review of trends and techniques. International Journal of Computer Applications, 182(1), 31-37. Erişim adresi: https://www.researchgate.net/profile/Vaibhav-Kumar-16/publication/326435728_Predictive_Analytics_A_Review_of_Trends_and_Techniques/links/5c484f6692851c22a38a6027/Predictive-Analytics-A-Review-of-Trends-and-Techniques.pdf
  46. Lee, Y., Chung, S., & Park, J. (2024). Online Review Analysis from a Customer Behavior Observation Perspective for Product Development. Sustainability. doi: 10.3390/su16093550.
  47. Lepenioti, K., Bousdekis, A., Apostolou, D. ve Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57–70. doi: 10.1016/j.ijinfomgt.2019.04.003
  48. Lo, V. S. (2002). The true lift model: a novel data mining approach to response modelling in database marketing. ACM SIGKDD Explorations Newsletter, 4(2), 78-86. doi: 10.1145/772862.772872
  49. Mehendale, P. (2022). AI for Climate Change Mitigation: Predictive Analytics and Sustainable Solutions, European Journal of Advances in Engineering and Technology, 9(5), 140-144. Erişim adresi: https://www.researchgate.net/profile/Pushkar-Mehendale/publication/384232328_AI_for_Climate_Change_Mitigation_Predictive_Analytics_and_Sustainable_Solutions/links/66ef30f619c9496b1fb52001/AI-for-Climate-Change-Mitigation-Predictive-Analytics-and-Sustainable-Solutions.pdf
  50. Munting, M. (2020). An explorative study towards the feasibility of uplift modelling within a direct marketing setting and a web-based setting (Yüksek lisans tezi). Erişim adresi: https://essay.utwente.nl/85430/1/Munting_BA_BMS.pdf
  51. Murphy, K. (2021). In praise of Table 1: The importance of making better use of descriptive statistics. Industrial and Organisational Psychology, 14, 461 - 477. doi: 10.1017/iop.2021.90.
  52. Nahar, J., Hossain, M. S., Rahman, M. M., ve Hossain, M. A. (2024). Advanced Predictive Analytics For Comprehensive Risk Assessment In Financial Markets: Strategic Applications And Sector-Wide Implications. Global Mainstream Journal of Business, Economics, Development & Project Management, 3(4), 39-53. doi: 10.62304/jbedpm.v3i4.148
  53. Nunes, P., Santos, J., ve Rocha, E. (2023). Challenges in predictive maintenance – A review. CIRP Journal of Manufacturing Science and Technology. doi: 10.1016/j.cirpj.2022.11.004.
  54. Nyberg, O. ve Klami, A. (2023). Exploring uplift modelling with high class imbalance. Data Mining and Knowledge Discovery 37: 736–766. doi: 10.1007/s10618-023-00917-9
  55. Olaya, D., Vásquez, J., Maldonado, S., Miranda, J. ve Verbeke, W. (2020). Uplift modelling for preventing student dropout in higher education. Decision Support Systems, 134, 113320. doi: 10.1016/j.dss.2020.113320
  56. Parmar, A., Sharma, P., ve Agarwal, L. (2023). Predictive analytics for business. International Journal of Food and Nutritional Sciences. doi: 10.48047/ijfans/v11/iss7/333.
  57. Proença, H. M. ve Moraes, F. (2023). Incremental profit per conversion: a response transformation for uplift modelling in e-commerce promotions. arXiv preprint arXiv:2306.13759. doi: 10.48550/arXiv.2306.13759
  58. Puri, S., Sehgal, V. ve Sharma, V. (2013). Customer centricity with predictive analytics in Indian retailing. International Journal of Intercultural Information Management, 3(3), 207. doi: 10.1504/ijiim.2013.057738
  59. Radcliffe, N. (2007). Using control groups to target on predicted lift: Building and assessing uplift model. Direct Marketing Analytics Journal, 3, 14-21. Erişim adresi: https://www.research.ed.ac.uk/en/publications/using-control-groups-to-target-on-predicted-lift-building-and-ass
  60. Radcliffe, N. J. ve Simpson, R. (2008). Identifying who can be saved and who will be driven away by retention activity. Journal of Telecommunications Management, 1(2). Erişim adresi: https://openurl.ebsco.com/EPDB%3Agcd%3A6%3A18830742/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A33061287&crl=c
  61. Radcliffe, N.J. ve Surry, P.D. (2011). Real-world uplift modelling with significance based uplift trees. Edinburgh: Portrait Technical Report TR-2011-1, Stochastic Solutions. Erişim adresi: https://www.stochasticsolutions.com/pdf/sig-based-up-trees.pdf
  62. Robins, J. ve Rotnitzky, A. (2004). Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models. Biometrika, 91(4), 763-783. doi: 10.1093/biomet/91.4.763
  63. Röbler, J., Tilly, R. ve Schoder, D. (2021). To treat, or not to treat: reducing volatility in uplift modelling through weighted ensembles. 54th Hawaii international conference on system sciences. doi: 10.24251/HICSS.2021.193
  64. Rzepakowski, P. ve Jaroszewicz, S. (2012). Decision trees for uplift modelling with single and multiple treatments. Knowledge and Information Systems, 32, 303–327. doi: 10.1007/s10115-011-0434-0
  65. Sanisoglu, M., Burnaz, S. ve Kaya, T. (2023). A gateway toward truly responsive customers: Using the uplift modelling to increase the performance of a B2B marketing campaign. Journal of Marketing Analytics. doi: 10.1057/s41270-023-00254-2
  66. Segal, T. (2022). What is prescriptive analytics? how it works and examples. Erişim adresi: https://www.investopedia.com/terms/p/prescriptive-analytics.asp
  67. Sharma, A. K., Sharma, D. M., Purohit, N., Rout, S. K. ve Sharma, S. A. (2022). Analytics techniques: descriptive analytics, predictive analytics, and prescriptive analytics. Decision Intelligence Analytics and the Implementation of Strategic Business Management, 1-14. doi: 10.1007/978-3-030-82763-2_1
  68. Shimizu, A., Togashi, R., Lam, A. ve Van Huynh, N. (2019, Kasım). Uplift modelling for cost effective coupon marketing in c-to-c e-commerce. 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI) (pp. 1744-1748). doi: 10.1109/ICTAI.2019.00259
  69. Shmueli, G., Bruce, P. C., Deokar, K. R. ve Patel, N. R. (2023). Machine learning for business analytics: Concepts, techniques, and applications with analytic solver data mining. John Wiley & Sons.
  70. Siegel, E. (2011). Uplift modelling: Predictive analytics can’t optimise marketing decisions without it. Prediction Impact white paper sponsored by Pitney Bowes Business Insight. Erişim adresi: https://www.predictiveanalyticsworld.com/machinelearningtimes/uplift-modelling-predictive-analytics-cant-optimize-marketing-decisions-without-it/5372/
  71. Šikšnys, L. ve Pedersen, T. B. (2016). Prescriptive analytics. Encyclopedia of Database Systems, 1–2. doi: 10.1007/978-1-4899-7993-3_80624-1
  72. Sołtys, M., Jaroszewicz, S. ve Rzepakowski, P. (2015). Ensemble methods for uplift modelling. Data mining and knowledge discovery, 29, 1531-1559. doi: 10.1007/s10618-014-0383-9
  73. TikTok. (n.d.). Creator Academy. Erişim adresi: https://www.tiktok.com/creator-academy
  74. Tucci, L. (2021, Aralık). What is predictive analytics? an enterprise guide. [Blog yazısı]. Erişim adresi: https://www.techtarget.com/searchbusinessanalytics/definition/predictive-analytics
  75. Valli, L. (2024). A succinct synopsis of predictive analysis applications in the contemporary period. International Journal of Multidisciplinary Sciences and Arts. doi: 10.47709/ijmdsa.v3i4.4625.
  76. Venkatesh, R., Balasubramanian, C. ve Kaliappan, M. (2019). Development of Big Data Predictive Analytics Model for Disease Prediction using Machine learning Technique. Journal of Medical Systems, 43, 272. doi: 10.1007/s10916-019-1398-y
  77. Wedel, M., Kannan, P. K. ve Tyser, R. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97–121. doi:10.1509/jm.15.0413
  78. Wirawan, P. (2023). Leveraging Predictive Analytics in Financing Decision-Making for Comparative Analysis and Optimization. Advances in Management & Financial Reporting. doi: 10.60079/amfr.v1i3.209.
  79. Wolniak, R. (2023). The concept of descriptive analytics. Scientific Papers of Silesian University of Technology. Organization & Management/Zeszyty Naukowe Politechniki Slaskiej. Seria Organizacji i Zarzadzanie, (172). doi: 10.29119/1641-3466.2023.172.42
  80. Zhang, Y., Xu, Z., ve Zhang, Z. (2024). Review on the Use of Data Analysis for Customer Segmentation and Personalization in Marketing. Advances in Economics, Management and Political Sciences. doi: 10.54254/2754-1169/97/20231519.
  81. Zhao, Y., Fang, X. ve Simchi-Levi, D. (2017). Uplift modelling with multiple treatments and general response types. Proceedings of the 2017 SIAM International Conference on Data Mining, 588–596. doi: 10.1137/1.9781611974973.66
  82. Zhao, Y., Zhang, H., Lyu, S., Jiang, R., Gu, J. ve Zhang, G. (2022, Ekim). Multiple instance learning for uplift modelling. Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 4727-4731). doi: 10.1145/3511808.355765