Published 2018-09-02

How to Cite

ÖZDEMİR, Y., & NALBANT, K. G. (2018). A REAL PERSONNEL SELECTION PROBLEM USING THE GENERALIZED CHOQUET INTEGRAL METHODOLOGY. Business & Management Studies: An International Journal, 6(2), 694–716. https://doi.org/10.15295/bmij.v6i2.270


The main objective in the selection of personnel is to select the most appropriate candidate for a job. Personnel selection for human resources management is a very important issue.The aim of this paper is to determine the best-performing personnel for promotion using an application of a Multi Criteria Decision Making(MCDM) method, generalized Choquet integral, to a real personnel selection problem of a case study in Turkey and 17 alternatives are ranked according to personnel selection criteria (22 subcriteria are classified under 5 main criteria). The main contribution of this paper is to determine the interdependency among main criteria and subcriteria, the nonlinear relationship among them and the environmental uncertainties while selecting personnel alternatives using the generalized Choquet integral method with the experts’ view. To the authors’ knowledge, this will be the first study which uses the generalized Choquet Integral methodology for human resources. 


Download data is not yet available.


  1. Afshari, A. R., Mojahed, M., Yusuff, R. M., Hong, T. S. & Ismail, M. Y. (2010). Personnel selection using ELECTRE. Journal of Applied Sciences, 10, 3068-3075.
  2. Baležentis, A., Baležentis, T. & Brauers, W., K. (2012). Personnel selection based on computing with words and fuzzy MULTIMOORA.Expert Systems with Applications, 39, 7961-7967.
  3. Bebčáková,I., Holecek, P. & Talasova, J. (2011). On the application of the fuzzified Choquet integral to multiple criteria evalution.Acta Polytechnica Hungarica, 8(3), 65-78.
  4. Boran, F. E., Genç, S. & Akay, D. (2011). Personnel selection based on intuitionistic fuzzy sets. Human Factors and Ergonomics in Manufacturing & Service Industries, 21, 493-503.
  5. Büyüközkan, G., Feyzioğlu, O. & Göçer, F. (2018). Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy Choquet integral approach. Transportation Research Part D: Transport and Environment, 58, 186-207.
  6. Chen, C.T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114, 1-9.
  7. Chen, Y. W. & Tzeng, G. H. (2001). Using fuzzy integral for evaluating subjectively perceived travel costs in a traffic assignment model. European Journal of Operational Research, 130, 653-664.
  8. Chiou, H. K., Tzeng, G. H. & Cheng, D. C. (2005). Evaluating sustainable fishing development stragtegies using fuzzy MCDM approach. Omega, 33, 223-234.
  9. Delgado, M., Herrera, F., Herrera-Viedma, E. & Martnez, L. (1998). Combining numerical and linguistic information in group decision making. Information Sciences, 107, 177-194.
  10. Demirel, T., Demirel, N. C. & Kahraman, C. (2010). Multi criteria warehouse location selection using Choquet integral. Expert Systems with Applications, 37(5), 3943-3952.
  11. Demirel, N. Ç., Demirel, T., Deveci, M. & Vardar, G. (2017). Location selection for underground natural gasstorage using Choquet integral. Journal of Natural Gas Science and Engineering, 45, 368-379.
  12. Gomesa, L. A., Machado, M. A. S., Rangel, L. A. & Araujo, R. (2015). Using the Choquet Integral to Improve Systems Usability: A multicriteria analysis. Procedia Computer Science, 31, 606-614.
  13. Grabisch, M.& Roubens, M. (2000). Application of the Choquet Integral in Multicriteria Decision Making. Fuzzy Measures Integrals, 40, 348-375.
  14. Kabak, M., Burmaoğlu, S. & Kazançoğlu, Y. (2012). A fuzzy hybrid MCDM approach for professional selection.
  15. Expert Systems with Applications, 39, 3516-3525.
  16. Karabasevic, D., Stanujkic, D., Urosevic, S. & Maksimovic, M. (2015). Selection of candidates in the mining industry based on the application of the SWARA and the MULTIMOORA methods. Acta Montanistica Slovaca, 20, 116-124.
  17. Karsak, E. E. (2005). Choquet integral-based decision making operator for robot selection. Knowledge-based Intelligent Information and Engineering Systems, 3682, 635-641.
  18. Kelemenis, A. & Askounis, D. (2010). A new TOPSIS based multi-criteria approach to personnel selection. Expert Systems with Applications, 37, 4999-5008.
  19. Li, G., Law, R., Vu, H. Q. & Rong, J. (2013). Discovering the Hotel Selection Preferences of Hong Kong in Bound Travelers Using the Choquet Integral. Tourism Management, 36, 321-330.
  20. Mazaud, C., Rendek, J., Bombardier, V. & Wendling, L. A. (2007). A feature selection method based on Choquet integral and typicality analysis. Proc. 16th Int. Conf. FUZZ-IEEE, 1073-1708.
  21. Meyer, P. & Roubens, M. (2006). On the use of the Choquet integral with fuzzy numbers in multiple criteria decision aiding. Fuzzy Sets and Systems, 157, 927-938.
  22. Nalbant, K. G. (2017). Weighting personnel selection criteria and personnel selection for promotion by using Multi Criteria Decision Making methods (MSc. thesis). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi.
  23. Nia, A. S., Olfat, L., Esmaeili, A., Rostamzadeh, R. & Antuchevičene, J. (2016). Using fuzzy Choquet integral operator for supplier selection with environmental considerations. Journal of Business Economics and Management, 17, 503-526.
  24. Ozdemir, Y. & Basligil, H. (2016). Aircraft selection using Fuzzy ANP and the generalized Choquet Integral method: The Turkish Airlines case. Journal of Intelligent and Fuzzy Systems, 31, 589-600.
  25. Ozdemir, Y., Nalbant, K. G. & Basligil, H. (2017). Evaluation of personnel selection criteria using Consistent Fuzzy Preference Relations. Operations Research and Information Engineering, 2, 1-6.
  26. Rashidi, A., Jazebi, F. & Brilakis, I. (2011). Neurofuzzy genetic system for selection of construction project managers. Journal of Construction Engineering and Management, 137, 17-29.
  27. Roy, B. & Misra, S. K. (2012). An integrated DEMATEL and AHP approach for personnel estimation.
  28. International Journal of Computer Science and Information Technology & Security, 2, 1206-1212.
  29. Tan, C. Q. & Chen, X. H. (2010). Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making.
  30. Expert Systems with Applications, 37, 149-157.
  31. Tsai, H. H. & Lu, I. Y. (2006). The evaluation of service quality using generalized Choquet integral. Inform Sciences, 176, 640-663.
  32. Tseng, M. L., Chiang, J. H. & Lan, L. W. (2009). Selection of optimal supplier in supply chain management strategy with analytic network process and Choquet Integral. Comput. Ind. Eng., 57, 330-340.
  33. Violeta, K. & Turskis, Z. (2014). A hybrid linguistic fuzzy multiple criteria group selection of a chief accounting officer. Journal of Business Economics and Management, 15, 232-252.
  34. Wu, J., Chen, F., Cuiping, N. & Zhang, Q (2013). Intuitionistic fuzzy-valued Choquet integral and its application in multicriteria decision making. Information Sciences, 222, 509-527.
  35. Yu, D., Zhang, W. & Xu, Y. (2013). Group decision making under hesitant fuzzy environment with application to personnel evaluation. Knowledge Based Systems, 52, 1-10.