Cilt 12 Sayı 4 (2024): Business & Management Studies: An International Journal
Makaleler

Türkiye ve AB üyesi ülkelerin e-devlet performanslarına göre kümelenmesi: SD tabanlı SAW yöntemiyle değerlendirilmesi

Hande Eren
Dr. Öğr. Üyesi, Kapadokya Üniversitesi, Nevşehir, Türkiye
Emel Gelmez
Doç. Dr., Selçuk Üniversitesi, Konya, Türkiye

Yayınlanmış 25.12.2024

Anahtar Kelimeler

  • E-Government Performance, Clustering Analysis, SD Method, SAW Method
  • E-Devlet Performansı, Kümeleme Analizi, SD Yöntemi, SAW Yöntemi

Nasıl Atıf Yapılır

Türkiye ve AB üyesi ülkelerin e-devlet performanslarına göre kümelenmesi: SD tabanlı SAW yöntemiyle değerlendirilmesi. (2024). Business & Management Studies: An International Journal, 12(4), 838-854. https://doi.org/10.15295/bmij.v12i4.2440

Nasıl Atıf Yapılır

Türkiye ve AB üyesi ülkelerin e-devlet performanslarına göre kümelenmesi: SD tabanlı SAW yöntemiyle değerlendirilmesi. (2024). Business & Management Studies: An International Journal, 12(4), 838-854. https://doi.org/10.15295/bmij.v12i4.2440

Öz

Teknolojinin gelişimi ile birlikte hükümetlerin ya da devletlerin vatandaşlara hizmet sunumlarında önemli dönüşümler meydana gelmiştir. Bu süreçte ülkelerin e-devlet uygulamalarının etkin bir şekilde belirlenmesi önemli bir konu olarak değerlendirilebilir. Bu bağlamda bu çalışmanın temel amacı Türkiye ve Avrupa Birliği (AB) üyesi ülkelerin e-devlet performanslarının Çok Kriterli Karar Verme (ÇKKV) yöntemlerinden yararlanılarak belirlenmesidir. Bu temel amaç doğrultusunda çalışmada E-Devlet Gelişmişlik İndeksi’nden (EGDI) yararlanılmıştır. Bu kapsamda çevrim içi hizmet indeksi, beşerî sermaye indeksi ve telekomünikasyon altyapı indeksi olmak üzere üç kriter kullanılmıştır. Ülkelerin e-devlet performanslarının belirlenmesi amacı ile ilk olarak kümeleme analizi yapılmıştır.  Kümeleme analizinin uygulanmasında WEKA programından faydalanılmıştır. Yapılan analizler sonucunda Türkiye ve AB üyesi 28 ülkenin e-devlet performansı açısından 4 kümeye ayrıldığı tespit edilmiştir.  Uygulanan algoritmalar arasından en tutarlı sonuçlar EM algoritmasından elde edilmiş olup; EM algoritmasının sonuçlarına göre elde edilen her bir küme için kriter ortalamaları hesaplanarak üç kriter ve 4 alternatif (küme) ile yeni bir karar matrisi elde edilmiştir. Elde edilen bu yeni karar matrisi için kriterlerin ağırlıklandırılmasında SD (Standart Deviation) yönteminden faydalanılmıştır. SD yönteminin uygulanması ile önem derecesi en yüksek kriter çevrim içi hizmet indeksi olarak belirlenmiştir. Ardından kümeler kendi arasında SAW (Simple Additive Weighting) yöntemi ile sıralanmıştır. SAW yönteminin sonuçlarına göre ise e-devlet performansı açısından Küme 1’in en iyi performansa sahip olduğu; Küme 1’i sırasıyla Küme 0, Küme 3 ve Küme 2’nin takip ettiği tespit edilmiştir.

Referanslar

  1. Abdel-Basset, M., Zhou, Y., Mohamed, M., & Chang, V. (2018). A group decision making framework based on neutrosophic VIKOR approach for e-government website evaluation. Journal of Intelligent & Fuzzy Systems, 34, 4213-4224. https://doi.org/10.1007/s10916-019-1156-1
  2. Achebo, J., & Odinikuku, W. E. (2015). Optimisation of gas metal arc welding process parameters using standard deviation (SDV) and multi-objective optimisation on the basis of ratio analysis (MOORA). Journal of Minerals and Materials Characterisation and Engineering, 3, 298-308. http://dx.doi.org/10.4236/jmmce.2015.34032
  3. Alır, G., Soydal, İ., & Öztürk, Ö. (2007). Türkiye’de e-devlet uygulamaları kapsamında kamu kurumlarına ait web sayfalarının değerlendirilmesi. Değişen Dünyada Bilgi Yönetimi Sempozyumu, Hacettepe Üniversitesi, Ankara.
  4. Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019). Mobile-based patient monitoring systems: a prioritisation framework using multi-criteria decision-making techniques. Journal of Medical Systems, 43, 1-19. https://doi.org/10.1007/s10916-019-1339-9
  5. Altıntaş, F. F. (2022). E-devlet performanslarının SD tabanlı COPRAS yöntemi ile analizi: G20 ülkeleri örneği. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23(4), 1004-1020. https://doi.org/10.37880/cumuiibf.1143706
  6. Altıntaş, F.F. (2023). G20 grubu ülkelerin iş yapma kolaylığı performanslarının analizi: Standart sapma tabanlı ARAS yöntemi ile bir uygulama. Malatya Turgut Özal Üniversitesi İşletme ve Yönetim Bilimleri Dergisi, 4(1), 1-21.
  7. Amalia, F. S., & Alita, D. (2023). Application of SAW method in decision support system for determination of exemplary students. Journal of Information Technology, Software Engineering and Computer Science, 1(1), 14-21.
  8. Aminjarahi, M., Abdoli, M., Fadaee, Y., Kohan, F., & Shokouhyar, S. (2021). The prioritisation of lean techniques in emergency departments using VIKOR and SAW approaches. Ethiopian Journal of Health Sciences, 31(2), 283-292. http://dx.doi.org/10.4314/ejhs.v31i2.11
  9. Ardielli, E. (2016). Comparison of multiple criteria decision making approaches: Evaluating e-government development. Littera Scripta, 9(2), 10-24.
  10. Aydın, Y. (2020). A hybrid multi-criteria decision making (MCDM) model consisting of SD and COPRAS methods in performance evaluation of foreign deposit banks. Equinox Journal of Economics Business and Political Studies, 7(2), 160-176.
  11. Bock, H. H. (1985). On some significance tests in cluster analysis. Journal of Classification, 2, 77-108.
  12. Bradley, P. S., Fayyad, U., & Reina, C. (1998). Scaling EM (Expectation-Maximisation) clustering to large databases. Technical Report MSR-TR- 98-35, Microsoft Research.
  13. Demircioğlu, M., & Eşiyok, S. (2020). Covid-19 salgını ile mücadelede kümeleme analizi ile ülkelerin sınıflandırılması. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 19(37), 369-389.
  14. Deng, H., Karunasena, K., & Xu, W. (2018). Evaluating the performance of e-government in developing countries: A public value perspective. Internet Research, 28(1), 169-190.
  15. Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The Critic Method. Computers & Operations Research, 22(7), 763-770. https://doi.org/10.1016/0305-0548(94)00059-H
  16. Dobrovolskienė, N., & Pozniak, A. (2021). Simple additive weighting versus technique for order preference by similarity to an ideal solution: Which method is better suited for assessing the sustainability of a real estate project. Entrepreneurship and Sustainability Issues, 8(4), 180-196. http://doi.org/10.9770/jesi.2021.8.4(10)
  17. E-Government Survey (2022). https://desapublications.un.org/sites/default/files/publications/2022-09/Web%20version%20E-Government%202022.pdf, Erişim Tarihi: 15.02.2024.
  18. Erdoğan, B. (2022). BİST’e kayıtlı bankaların finansal performansının AHP-SD tabanlı PIV yöntemiyle değerlendirilmesi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 52, 93-109. https://doi.org/10.30794/pausbed.1059473
  19. Frades, I., & Matthiesen, R. (2010). Overview on techniques in cluster analysis. Bioinformatics Methods in Clinical Research, 81-107.
  20. Gupta, K. P., Bhaskar, P., & Singh, S. (2016). Critical factors influencing e-government adoption in India: An investigation of the citizens' perspectives. Journal of Information Technology Research (JITR), 9(4), 28-44. https://doi.org/10.4018/JITR.2016100103
  21. Hadi, A. F., Permana, R., & Syafwan, H. (2019). Decision support system in determining structural position mutations using Simple Additive Weighting (SAW) method. In Journal of Physics: Conference Series: IOP Publishing.
  22. https://cbddo.gov.tr/haberler/4834/-birlesmis-milletler-e-devlet-gelismislik-endeksi-aciklandi, Erişim Tarihi: 10.03.2024.
  23. https://www.ab.gov.tr/_233.html, Erişim Tarihi: 08.02.2023.
  24. https://www.sbb.gov.tr/wp-content/uploads/2022/08/e-Devlet-Hizmetlerinin-Gelistirilmesi-Calisma-Grubu-Raporu.pdf, Erişim Tarihi: 10.03.2023.
  25. Ibrahim, A., & Surya, R. A. (2019). The implementation of simple additive weighting (SAW) method in decision support system for the best school selection in Jambi. In Journal of Physics: Conference Series: IOP Publishing.
  26. Işık, Ö. (2020). SD tabanlı MABAC ve WASPAS yöntemleriyle kamu sermayeli kalkınma ve yatırım bankalarının performans analizi. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 29, 61-78. https://doi.org/10.18092/ulikidince.705148
  27. Jacob, D. W., Fudzee, M. F. M., Salamat, M. A., Saedudin, R. R., Yanto, I. T. R., & Herawan, T. (2017). An application of rough set theory for clustering performance expectancy of Indonesian e-government dataset. In Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining, Bandung, Indonesia.
  28. Jung, Y. G., Kang, M. S., & Heo, J. (2014). Clustering performance comparison using K-means and expectation maximisation algorithms. Biotechnology & Biotechnological Equipment, 28, 44-48. https://doi.org/10.1080/13102818.2014.949045
  29. Kahraman, C., Demirel, N. Ç., & Demirel, T. (2007). Prioritisation of E-government strategies using a SWOT-AHP analysis: the case of Turkey. European Journal of Information Systems, 16(3), 284-298. https://doi.org/10.1057/palgrave.ejis.3000679
  30. Karaatlı, M., Karataş, T., & Ömürbek, N. (2020). Ülkelerin insani özgürlük endeksine göre kümelenmesi. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 20(3), 271-286. https://doi.org/10.18037/ausbd.801788
  31. Kassambara, A. (2017). Practical guide to cluster analysis in R. Unsupervised machine learning: Sthda.
  32. Kou, G., Peng, Y., & Wang, G. (2014). Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Information Sciences, 275, 1-12. https://doi.org/10.1016/j.ins.2014.02.137
  33. Landau, S., & Ster, I. C. (2010). Cluster analysis: overview. B. Peterson, E. Baker &, B. McGaw (Edt.), International encyclopedia of education. Oxford: Elsevier, 72-83.
  34. Lněnička, M. (2015). E-government Development Index and Its Comparison in the EU Member States. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics and Administration.
  35. Muniappan, A., Raj, J. A., Jayakumar, V., Prakash, R. S., & Sathyaraj, R. (2018). Optimisation of WEDM process parameters using standard deviation and MOORA method. In IOP Conference Series: Materials Science and Engineering: IOP Publishing.
  36. Salehi, A., & Izadikhah, M. (2014). A novel method to extend SAW for decision-making problems with interval data. Decision Science Letters, 3(2), 225-236. https://doi.org/10.5267/j.dsl.2013.11.001
  37. Sammaknejad, N., Zhao, Y., & Huang, B. (2019). A review of the expectation maximisation algorithm in data-driven process identification. Journal of Process Control, 73, 123-136. https://doi.org/10.1016/j.jprocont.2018.12.010
  38. Siskos, E., Askounis, D., & Psarras, J. (2014). Multi-criteria decision support for global e-government evaluation. Omega, 46, 51-63. https://doi.org/10.1016/j.omega.2014.02.001
  39. Tiika, B. J., Tang, Z., Azaare, J., Dagadu, J. C., & Otoo, S. N. A. (2024). Evaluating e-government development among Africa Union Member States: an analysis of the impact of e-government on public administration and governance in Ghana. Sustainability, 16(3), 1333. https://doi.org/10.3390/su16031333
  40. Urmak Akçakaya, E. D., & Ömürbek, N. (2021). OECD ülkelerinin demokrasi kalitesi göstergeleri açısından kümelenmesi. OPUS Uluslararası Toplum Araştırmaları Dergisi, 18 (Yönetim ve Organizasyon Özel Sayısı), 1365-1393.
  41. Vavrek, R., & Ardielli, E. (2018). TOPSIS as evaluation tool of e-government development in EU member states. In Proceedings of the 5th International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM: STEF92 Technology.
  42. Wolkind, S. N., & Everitt, B. (1974). A cluster analysis of the behavioural items in the pre-school child. Psychological Medicine, 4, 422-427. https://doi.org/10.1017/S0033291700045876
  43. Yıldırım, K. (2022). Ulusal ve yerel e-devlet gelişimi arasındaki nedensellik durumu ve temel belirleyicileri. Akademik Yaklaşımlar Dergisi, 13(1), 270- 297.
  44. Zanakis, S. H., Solomon, A., Wishart, N., & Dublish, S. (1998). Multi-attribute decision making: a simulation comparison of select methods. European Journal of Operational Research, 107(3), 507-529. https://doi.org/10.1016/S0377-2217(97)00147-1