Vol. 10 No. 3 (2022): Business & Management Studies: An International Journal
Articles

Dynamic multi-mode resource-constrained multi-project scheduling problem with weighted earliness and tardiness: a real-life boutique furniture implementation

Murat RUHLUSARAÇ
Dr., Erciyes University, Kayseri, Turkiye
Filiz ÇALIŞKAN
Prof. Dr., Erciyes University, Kayseri, Turkiye

Published 2022-09-25

Keywords

  • Proje Çizelgeleme, Dinamik Proje, Çoklu Mod, Çoklu Proje, Erken ve Geç Bitirme
  • Project Scheduling, Dynamic Project, Multi-Mode, Multi-Project, Earliness and Tardiness

How to Cite

RUHLUSARAÇ, M., & ÇALIŞKAN, F. (2022). Dynamic multi-mode resource-constrained multi-project scheduling problem with weighted earliness and tardiness: a real-life boutique furniture implementation. Business &Amp; Management Studies: An International Journal, 10(3), 1095–1117. https://doi.org/10.15295/bmij.v10i3.2111

Abstract

Real-life project scheduling environments are often dynamic and subject to disruption. Early or late completion of interrupted projects can create costs for the business. At the same time, there is an alternative to producing multiple projects at multiple different costs. In this study, a new mixed integer linear programming model that minimizes the sum of weighted earliness and tardiness penalties and mode selection costs is proposed to solve the real-life problem faced by a boutique furniture company. A proposed dynamic model also considers the cost of deviation from the baseline schedule in case disruption scenarios corrupt the resulting baseline schedule. The problems are solved with the CPLEX solver using the GAMS program. The results show that the interruption scenarios partially change the baseline schedule and increase the total cost. In case of more than one interruption in the same schedule, the number of late completed activities and their delay times increased.

Downloads

Download data is not yet available.

References

  1. Afshar-Nadjafi, B., Basati, M., & Maghsoudlou, H., (2017). “Project scheduling for minimizing temporary availability cost of rental resources and tardiness penalty of activities”. Applied Soft Computing Journal, Vol. 61, 536–548. https://doi.org/10.1016/j.asoc.2017.08.033
  2. Afshar-Nadjafi, B., & Shadrokh, S., (2008). "An algorithm for the weighted earliness-tardiness unconstrained project scheduling problem". Journal of Applied Sciences, Vol. 8 (9), 1651–1659. https://doi.org/10.3923/jas.2008.1651.1659
  3. Aouam, T., & Vanhoucke, M., (2019). "An agency perspective for multi-mode project scheduling with time/cost trade-offs". Computers and Operations Research, Vol. 105, 167–186. https://doi.org/10.1016/j.cor.2019.01.012
  4. Aytug, H., Lawley, M.A., McKay, K., Mohan, S., & Uzsoy, R., (2005). "Executing production schedules in the face of uncertainties: A review and some future directions". European Journal of Operational Research. Vol. 161, 86-110. https://doi.org/10.1016/j.ejor.2003.08.027
  5. Bold, M., & Goerigk, M., (2021). "A compact reformulation of the two-stage robust resource-constrained project scheduling problem". Computers and Operations Research, Vol. 130, 105232. https://doi.org/10.1016/j.cor.2021.105232
  6. Bozorgirad, M. A., & Logendran, R., (2012). "Sequence-dependent group scheduling problem on unrelated-parallel machines". Expert Systems with Applications, Vol. 39 (10), 9021–9030. https://doi.org/10.1016/j.eswa.2012.02.032
  7. Burgelman, J., & Vanhoucke, M., (2018). "Maximising the weighted number of activity execution modes in project planning". European Journal of Operational Research. Vol. 270 (3), 999–1013. https://doi.org/10.1016/j.ejor.2018.04.035
  8. Capa C., & Ulusoy, G., (2015). "Proactive project scheduling in an R&D department a bi-objective genetic algorithm". 2015 International Conference on Industrial Engineering and Operations Management (IEOM), 1-6, doi: 10.1109/IEOM.2015.7093733.
  9. Chakrabortty, R.K., Rahman, H.F., & Ryan, M.J., (2020). "Efficient priority rules for project scheduling under dynamic environments: A heuristic approach". Computers and Industrial Engineering.140, 106287. https://doi.org/10.1016/j.cie.2020.106287
  10. Chakrabortty, R.K., Rahman, H.F., Haque, K.M.A., Paul, S.K., & Ryan, M.J., (2021). "An event-based reactive scheduling approach for the resource constrained project scheduling problem with unreliable resources". Computers and Industrial Engineering. Vol. 151, 106981. https://doi.org/10.1016/j.cie.2020.106981
  11. Chakrabortty, R.K., Sarker, R.A., & Essam, D.L., (2016). "Multi-mode resource-constrained project scheduling under resource disruptions". Computers and Chemical Engineering. Vol. 88, 13–29. https://doi.org/10.1016/j.compchemeng.2016.01.004
  12. Chakrabortty, R.K., Sarker, R.A., & Essam, D.L., (2018). "Single mode resource-constrained project scheduling with unreliable resources". Operational Research. 1–35. https://doi.org/10.1007/s12351-018-0380-7
  13. Changchun, L., Xi, X., Canrong, Z., Qiang, W., & Li, Z., (2018). "A column generation based distributed scheduling algorithm for multi-mode resource-constrained project scheduling problem". Computers and Industrial Engineering. Vol. 125(September), 258–278. https://doi.org/10.1016/j.cie.2018.08.036
  14. Cheng, J., Fowler, J., Kempf, K., & Mason, S., (2015). "Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting". Computers and Operations Research. Vol. 53, 275-287. http://dx.doi.org/10.1016/j.cor.2014.04.018
  15. Chtourou, H., & Haouari, M., (2008). "A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling". Computers and Industrial Engineering. Vol. 55 (1), 183–194. https://doi.org/10.1016/j.cie.2007.11.017
  16. Collyer, S., (2015). Managing amidst rapid change : management approaches for dynamic environments. Project Management Institute. Inc. Retrieved from https://books.google.co.uk/books/about/Managing_Amidst_Rapid_Change.html?id=g_KuDgAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
  17. Da Silva, A.R.V., & Ochi, L.S., (2010). Hybrid heuristics for dynamic resource-constrained project scheduling problem. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6373 LNCS, 73–87. https://doi.org/10.1007/978-3-642-16054-7_6
  18. Da Silva, A.R.V., Ochi, L.S., & Santos, H.G., (2008). "New effective algorithm for dynamic resource-constrained project scheduling problem". EngOpt 2008 - International Conference on Engineering Optimization. Rio de Janeiro, Brazil, 01 - 05 June 2008.
  19. Damay, J., Quilliot, A., & Sanlaville, E., (2007). "Linear programming based algorithms for preemptive and non-preemptive RCPSP". European Journal of Operational Research. Vol. 182 (3), 1012–1022. https://doi.org/10.1016/j.ejor.2006.09.052
  20. Davari, M., & Demeulemeester, E., (2017). "The proactive and reactive resource-constrained project scheduling problem: the crucial role of buffer-based reactions". KU Leuven, Faculty of Economics and Business, KBI_1707. http://dx.doi.org/10.2139/ssrn.2976350
  21. Davari, M., & Demeulemeester, E., (2018). "Important classes of reactions for the proactive and reactive resource-constrained project scheduling problem". Annals of Operations Research, 1–24. https://doi.org/10.1007/s10479-018-2899-7
  22. Deblaere, F., Demeulemeester, E., & Herroelen, W., (2011). "Reactive scheduling in the multi-mode RCPSP". Computers and Operations Research. Vol. 38 (1), 63–74. https://doi.org/10.1016/j.cor.2010.01.001
  23. Golestaneh, R., Jafari, A., Khalilzadeh, M., & Karimi, H., (2013). "Minimizing total resource tardiness penalty costs in the resource-constrained project scheduling problem with metaheuristic algorithms". International Journal of Research in Industrial Engineering, Vol. 2(3), 47-57.
  24. Gonçalves, J.F., Mendes, J.J.M., & Resende, M.G.C., (2015). The basic multi-project scheduling problem. In Handbook on Project Management and Scheduling Vol. 2 (pp. 667–683). Springer International Publishing.
  25. Hartmann, S., & Briskorn, D., (2010). "A survey of variants and extensions of the resource-constrained project scheduling problem". European Journal of Operational Research. Vol. 207 (1), 1–14. https://doi.org/10.1016/j.ejor.2009.11.005
  26. Hauder, V.A., Beham, A., Raggl, S., Parragh, S.N., & Affenzeller, M., (2020). "Resource-constrained multi-project scheduling with activity and time flexibility". Computers and Industrial Engineering. Vol. 150, 106857. https://doi.org/10.1016/j.cie.2020.106857
  27. Hazır, Ö., & Ulusoy, G., (2020). "A classification and review of approaches and methods for modeling uncertainty in projects". International Journal of Production Economics, Vol. 223, 107522, ISSN 0925-5273, https://doi.org/10.1016/j.ijpe.2019.107522.
  28. He, N., Z. Zhang, D., & Yuce, B., (2022) "Integrated multi-project planning and scheduling - a multiagent approach", European Journal of Operational Research, Vol. 302, 2, 688-699, ISSN 0377-2217, https://doi.org/10.1016/j.ejor.2022.01.018.
  29. Herroelen, W., & Leus, R., (2005). "Project scheduling under uncertainty: survey and research potentials". European Journal of Operational Research. Vol. 165, 289-306.
  30. Joo, B. J., Chua, T. J., Cai, T. X., & Chua, P. C., (2019). "Coordination-based reactive resource-constrained project scheduling". Procedia CIRP. Vol. 81, 51–56. https://doi.org/10.1016/j.procir.2019.03.010
  31. Kéri, A., & Kis, T., (2006) Primal-dual combined with constraint propagation for solving RCPSPWET. In: Haasis HD., Kopfer H., Schönberger J. (eds) Operations Research Proceedings 2005. Operations Research Proceedings, vol 2005. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32539-5_107
  32. Khoshjahan, Y., Najafi, A.A., & Afshar-Nadjafi, B., (2013). "Resource-constrained project scheduling problem with discounted earliness-tardiness penalties: Mathematical modeling and solving procedure". Computers and Industrial Engineering. Vol. 66 (2), 293–300. https://doi.org/10.1016/j.cie.2013.06.017
  33. Kolisch, R., Sprecher, A., & Drexl, A., (1995). "Characterization and generation of a general class of resource-constrained project scheduling problems". Management Science. Vol. 41 (10), 1693–1703. https://doi.org/10.1287/mnsc.41.10.1693
  34. Koné, O., Artigues, C., Lopez, P., & Mongeau, M., (2011). "Event-based MILP models for resource-constrained project scheduling problems". Computers and Operations Research. Vol. 38, 3–13. https://doi.org/10.1016/j.cor.2012.10.018
  35. Kreter, S., Rieck, J., & Zimmermann, J., (2016). "Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars". European Journal of Operational Research. Vol. 251 (2), 387–403. https://doi.org/10.1016/j.ejor.2015.11.021
  36. Krüger, D., & Scholl, A., (2009). "A heuristic solution framework for the resource-constrained (multi-)project scheduling problem with sequence-dependent transfer times". European Journal of Operational Research. Vol. 197 (2), 492–508. https://doi.org/10.1016/j.ejor.2008.07.036
  37. Kurt P.A., & Kececi B. (2019) Resource Constrained Multi-project Scheduling: Application in Software Company. In: Karwowski W., Trzcielinski S., Mrugalska B., Di Nicolantonio M., Rossi E. (eds) Advances in Manufacturing, Production Management and Process Control. AHFE 2018. Advances in Intelligent Systems and Computing, Vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-94196-7_51
  38. Larsen, A., & Madsen, O.B.G., (2000). The dynamic vehicle routing problem. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD; No. 2000-73).
  39. Larsen A., Madsen O.B.G., & Solomon M.M., (2007). Classification of dynamic vehicle routing systems. In: Zeimpekis V., Tarantilis C.D., Giaglis G.M., Minis I. (eds) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, Vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71722-7_2
  40. Ma, Z., Demeulemeester, E., He, Z., & Wang, N., (2019). "A computational experiment to explore better robustness measures for project scheduling under two types of uncertain environments". Computers and Industrial Engineering, 1–28. https://doi.org/10.1016/j.cie.2019.04.014
  41. Oztemel, E., & Selam, A.A., (2017). "Bees Algorithm for multi-mode, resource-constrained project scheduling in molding industry". Computers and Industrial Engineering, Vol. 112, 187-196. http://dx.doi.org/10.1016/j.cie.2017.08.012
  42. Pamay, M.B., (2011). A linear programming based method for the resource-constrained multi-project scheduling problem with weighted earliness/tardiness costs. [MSc dissertation]. The University of Sabancı, Istanbul.
  43. Rahman, H.F., Chakrabortty, R.K., & Ryan, M.J., (2021). "Scheduling project with stochastic durations and time-varying resource requests: A metaheuristic approach". Computers and Industrial Engineering, Vol. 157, 107363. https://doi.org/10.1016/j.cie.2021.107363
  44. Ruhlusaraç, M., (2020). Dynamic multi-mode resource-constrained multi-project scheduling with weighted earliness and tardiness and its application. [PhD dissertation]. The University of Erciyes, Kayseri.
  45. Ruhlusaraç, M., & Çalışkan, F., (2018). Multi-mode resource-constrained multi-project scheduling problem with weighted earliness and tardiness. 9th International Science and Technology Conference. July 18-20, 2018 Paris, France, 60-64.
  46. Ruhlusaraç, M., & Çalışkan, F., (2020). "A mathematical model for dynamic project scheduling problem and reactive scheduling implementation". Business & Management Studies: An International Journal. Vol. 8 (4), 83-97. https://doi.org/10.15295/bmij.v8i4.1708
  47. Sabuncuoglu, I., & Bayiz, M., (2000). "Analysis of reactive scheduling problems in a job shop environment". European Journal of Operational Research. Vol. 126 (3), 567–586. https://doi.org/10.1016/S0377-2217(99)00311-2
  48. Saif, U., Yue, L., & Awadh, M. A., (2022). "Coordinated Planning and Scheduling of Multiple Projects With New Projects Arrival Under Resource Constraint Using Drum Buffer Rope Heuristic", IEEE Access, Vol. 10, 84244-84266, https://doi.org/10.1109/ACCESS.2022.3195045.
  49. Salemi Parizi, M., Gocgun, Y., & Ghate, A., (2017). "Approximate policy iteration for dynamic resource-constrained project scheduling". Operations Research Letters. Vol. 45 (5), 442–447. https://doi.org/10.1016/j.orl.2017.06.002
  50. Schwindt C., (2000). Minimizing earliness-tardiness costs of resource-constrained projects. In: Inderfurth K., Schwödiauer G., Domschke W., Juhnke F., Kleinschmidt P., Wäscher G. (eds) Operations Research Proceedings 1999. Operations Research Proceedings 1999 (Selected Papers of the Symposium on Operations Research (SOR' 99) Magdeburg, September 1–3, 1999), vol 1999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58300-1_62
  51. Song, W., Xi, H., Kang, D., & Zhang, J., (2018). "Simulation modelling practice and theory an agent-based simulation system for multi-project scheduling under uncertainty". Simulation Modelling Practice and Theory. 86(November 2017), 187–203. https://doi.org/10.1016/j.simpat.2018.05.009
  52. Su, C.T., Santoro, M.C., & Mendes, A.B., (2018). "Constructive heuristics for project scheduling resource availability cost problem with tardiness". Journal of Construction Engineering and Management, Vol. 144 (8). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001524.
  53. Tao, S., & Dong, Z.S., (2018). "Multi-mode resource-constrained project scheduling problem with alternative project structures". Computers and Industrial Engineering, Vol. 125, 333–347. https://doi.org/10.1016/j.cie.2018.08.027
  54. Ulusoy, G., Hazır, Ö., (2021). An introduction to project modeling and planning, Springer Texts in Business and Economics, https://doi.org/10.1007/978-3-030-61423-2.
  55. Van de Vonder, S., (2006). "Proactive-reactive procedures for robust project scheduling". Applied Economics, (247), 239.
  56. Van de Vonder, S., Ballestín, F., Demeulemeester, E., & Herroelen, W., (2007a). "Heuristic procedures for reactive project scheduling". Computers and Industrial Engineering. Vol. 52 (1), 11–28. https://doi.org/10.1016/j.cie.2006.10.002
  57. Van de Vonder, S., Demeulemeester, E., & Herroelen, W., (2008). "Proactive heuristic procedures for robust project scheduling: an experimental analysis". European Journal of Operational Research. 189 (3), 723–733. https://doi.org/10.1016/j.ejor.2006.10.061
  58. Van de Vonder, S., Demeulemeester, E., & Herroelen, W., (2007b). "A classification of predictive-reactive project scheduling procedures". Journal of Scheduling. Vol. 10 (3), 195–207. https://doi.org/10.1007/s10951-007-0011-2
  59. Van Peteghem, V., & Vanhoucke, M., (2014). "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances". European Journal of Operational Research. Vol. 235 (1), 62–72. https://doi.org/10.1016/j.ejor.2013.10.012
  60. Vanhoucke, M., Demeulemeester, E., Herroelen, W., (2001). "An exact procedure for the resource-constrained weighted earliness – tardiness project scheduling". Annals of Operations Research. Vol. 102, 179–196. https://doi.org/10.1023/A:1010958200070
  61. Voß, S., & Witt, A., (2007). "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements : a real-world application". Int. J. Production Economics. Vol. 105, 445–458. https://doi.org/10.1016/j.ijpe.2004.05.029
  62. Wang, H., Lappas, N. H., & Gounaris, C., (2019). "Multi-mode resource-constrained project scheduling with alternative prerequisites : new models and computational studies". Industrial & Engineering Chemistry Research. 1–35. https://doi.org/10.1021/acs.iecr.9b02455
  63. Wang, W., Ge, X., Li, L., & Su, J., (2019). "Proactive and reactive multi-project scheduling in uncertain environment". IEEE Access. Vol. 7, 88986–88997. https://doi.org/10.1109/access.2019.2926337
  64. Watermeyer, K., & Zimmermann, J., (2020). "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints". OR Spectrum. Vol. 42, 427-460. https://doi.org/10.1007/s00291-020-00583-z
  65. Yassine, A.A., Mostafa, O., & Browning, T.R., (2017). "Scheduling multiple, resource-constrained, iterative, product development projects with genetic algorithms". Computers and Industrial Engineering. Vol. 107, 39-56, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2017.03.001.
  66. Yuan, Y., Ye, S., Lin, L., & Gen, M., (2021). "Multi-objective multi-mode resource-constrained project scheduling with fuzzy activity durations in prefabricated building construction". Computers and Industrial Engineering, doi: https://doi.org/10.1016/j.cie.2021.107316
  67. Zhang, Y., Hu, X., Cao, X., & Wu, C., (2022). "An efficient hybrid integer and categorical particle swarm optimization algorithm for the multi-mode multi-project inverse scheduling problem in turbine assembly workshop". Computers & Industrial Engineering. Vol. 169, 108148, ISSN 0360-8352, https://doi.org/10.1016/j.cie.2022.108148.
  68. Zhu, G., Bard, J. F., & Yu, G., (2005). "Disruption management for resource-constrained project scheduling". Journal of the Operational Research Society. Vol. 56, 365–381. https://doi.org/10.1057/palgrave.jors.2601860.