Vol. 9 No. 2 (2021): Business & Management Studies: An International Journal
Articles

Investigation of compulsory distance education practices with integrated technology acceptance models during the coronavirus (COVID-19) pandemic

Vasfi Kahya
Asst. Prof. Dr., Kütahya Dumlupınar University

Published 2021-06-25

Keywords

  • Uzaktan Eğitim, COVID-19, Teknoloji Kabul Modeli, Bilgi Sistemleri Başarı Modeli, Birleştirilmiş Teknoloji Kabul Modeli
  • Distance Learning, COVID-19, Technology Acceptance Model, Information Systems Success Model, İntegrated Technology Acceptance Models

How to Cite

Kahya, V. (2021). Investigation of compulsory distance education practices with integrated technology acceptance models during the coronavirus (COVID-19) pandemic. Business & Management Studies: An International Journal, 9(2), 737-750. https://doi.org/10.15295/bmij.v9i2.1783

Abstract

This paper attempted to investigate the technology acceptance issues of the students caused by COVID-19, the global epidemic forcing educational institutions to shift towards distance education processes. This research aims to explain how the distance education system, which was compulsory during the COVID-19 pandemic period, was perceived by users and the variables that caused the acceptance or rejection of the system through the Technology Acceptance Model and The Information Systems Success Model variables. During the 2019-2020 spring semester, 377 undergraduate and graduate degree students from Kütahya Dumlupinar University and Bilecik Şeyh Edebali University took distance education courses 5-point Likert type questions were asked to measure the impact of demographic factors and main variables proposed by the questionnaire. According to the findings, it was seen that the universities owned only 50% of the required technological infrastructure tools. In addition, information quality, system quality and perceived benefit, which affect distance learning platforms, also affect the user satisfaction rates. The user satisfaction variable affects usage rate explaining 39% of the variable. It is asserted that the distance education platform is used as an alternative to face-to-face training, and that will be important for improving the user direction, having the necessary infrastructure tools, managing the process more successfully.

Downloads

Download data is not yet available.

References

  1. Adeyemi, I. O., & Issa, A. O. (2020). Integrating information system success model (ISSM) and technology acceptance model (TAM): Proposing Students’ Satisfaction with University Web Portal Model. Record and Library Journal, 6(1), 69-79.
  2. Ağaoğlu, E., İmer, G. & Kurubacak, G. (2002). A case study of organizing distance education: Anadolu University, Turkish Online Journal of Distance Education-TOJDE, 3(1), 45-51.
  3. Al-Maroof, R. S., Salloum, S. A.,Hassanien A. E. & Shaalan, K. (2020). Fear from COVID-19 and technology adoption: the impact of Google Meet during Coronavirus pandemic, Interactive Learning Environments, DOI: 10.1080/10494820.2020.1830121
  4. Al-Okaily, M., M Alqudah, H., Matar, A., Lutfi, A., & Taamneh, A. (2020). Impact of COVID-19 Pandemic on acceptance of E-Learning System In Jordan: A Case of Transforming the Traditional Education Systems, Humanities & Social Sciences Reviews,8(4), 840-851.
  5. Amaro, S., Duarte, P., (2015). An integrative model of consumers' intentions to purchase travel online. Tourism Management, Vol. 46, ss. 64-79.
  6. Ashill, N. and Jobber, D. (1999). The impact of environmental uncertainty perceptions, decision maker characteristics and work environment characteristics on the perceived usefulness of marketing information systems (MKIS): a conceptual framework. Journal of Marketing Management, 15, 519-540.
  7. Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management science, 29(5), 530-545.
  8. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation–confirmation model. MIS Quarterly, Vol:25, No:3, 351–370.
  9. Bitner, M. J. (1990). Evaluating service encounters: the effects of physical surroundings and employee responses. Journal of Marketing, 54, 69–82.
  10. Bozkurt, A. (2020). Koronavirüs (COVID-19) pandemi süreci ve pandemi sonrası dünyada eğitime yönelik değerlendirmeler: Yeni normal ve yeni eğitim paradigması. AUAd, 6(3), 112-142.
  11. Chung, E., Subramaniam, G., & Dass, L. C. (2020). Online Learning Readiness among University Students in Malaysia amidst COVID-19. Asian Journal of University Education, 16(2), 46-58.
  12. Çelik, K. ve Sökmen, A. (2018). Uzaktan eğitime devam etme niyetinin anlaşılması: genişletilmiş teknoloji kabul modeli. Yönetim, Ekonomi ve Pazarlama Araştırmaları Dergisi, 2(3), 1-23.
  13. Daniel, S. J. (2020). Education and the COVID-19 pandemic. Prospects, 1-6.
  14. Davis, Fred. D.; Bagozzi, R. P. And Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), s. 982-1003.
  15. DeLone, W. H., McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information Systems Research, 3, 60--‐‑95.
  16. Devaraj, S., Fan, M., Kohli, R. (2002). “Antecedents of B2C channel satisfaction and preference: validating e-commerce metrics”, Information Systems Research, Vol:13, No:3, 316–333.
  17. Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49(1), 5-22.
  18. Efiloğlu Kurt, Ö. (2015). Üniversite öğrencilerinin uzaktan eğitime bakış açılarının teknoloji kabul modeli ve bilgi sistemleri başarı modeli entegrasyonu ile belirlenmesi. Uluslararası Alanya İşletme Fakültesi Dergisi, 7(3), 223-234.
  19. Gelişli, Y. (2015). Uzaktan eğitimde öğretmen yetiştirme uygulamaları: tarihçe ve gelişim, Eğitim ve Öğretim Araştırmaları Dergisi, Cilt:4 Sayı:3
  20. Godoe, P., & Johansen, T. (2012). Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. Journal of European Psychology Students, 3(1).
  21. Gülbahar, Y. (2012). E-öğrenme. 2. Baskı. Ankara: Pegem Akademi
  22. Harting, K., & Erthal, M. J. (2005). History of distance learning. Information technology, learning, and performance journal, 23(1), 35-44.
  23. Hung, S.Y., Chang, C. M., (2005). User acceptance of WAP services: Test of competing theories. Computer Standards and Interfaces, 27(4), 359-370.
  24. Jones, D. (1996). Computing by distance education: problems and solutions. ITiCSE '96 Proceedings of the 1st Conference on Integrating Technology into Computer Science Education. Barcelona, İspanya: 02-06 Haziran, 139-146.
  25. Kahya, V. (2015). İnsan kaynakları bilgi sistemlerinin kullanımında etkili olan faktörlerin genişletilmiş teknoloji kabul modeli ile incelenmesi. Dumlupınar Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı Doktora Tezi.
  26. Kaya, Z., Erden, O., Çakır, H., ve Bağırsakçı B. (2004). “Uzaktan eğitimin temelleri dersindeki uzaktan eğitim ihtiyacı ünitesinin web tabanlı sunumunun hazırlanması”. The Turkish Online Journal of Educational Technology. 3(3): 165-175.
  27. Keskin, M. & Özer Kaya, D. (2020). COVID-19 sürecinde öğrencilerin web tabanlı uzaktan eğitime yönelik geri bildirimlerinin değerlendirilmesi. İzmir Kâtip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 5(2): 59-67
  28. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & management, 43(6), 740-755.
  29. Korkmaz, G., & Toraman, Ç. (2020). Are we ready for the post-COVID-19 educational practice? An investigation into what educators think as to online learning. International Journal of Technology in Education and Science (IJTES), 4(4), 293-309.
  30. Lehman, J.D. & Russell, J.D. (2006). Educational technology for teaching and learning. Upper Saddle River, New Jersey: Pearson Merrill Prentice Hall
  31. Liao, C., Chen, J. and Yen, D. C., (2007), “Theory of planning behavior (PDT) and customer satisfaction in the continued use of e-service: An integrated model”, Computers in Human Behavior, 23(6), 2804–2822.
  32. Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
  33. Moore, M. G. (1990). Background and overview of contemporary American distance education. Contemporary issues in American distance education (pp. xii−xxvi). New York: Pergamon Press.
  34. Nagy, J. T. (2018). Evaluation of online video usage and learning satisfaction: An extension of the technology acceptance model. International Review of Research in Open and Distributed Learning, 19(1): 160-185.
  35. Negüs, F. (2016). Örgün ve uzaktan eğitim lisans öğrencilerinin teknoloji kabulüne ilişkin tutumlari üzerine bir araştırma. İstanbul Journal of Social Sciences, S. 14.
  36. Lehman, J.D. & Russell, J.D. (2006). Educational Technology for Teaching and Learning. Upper Saddle River, New Jersey: Pearson Merrill Prentice Hall.
  37. Nipper, S. (1989). Third generation distance learning and computer conferencing. In R. Mason & A. Kaye (Eds.), Mindweave: Communication, computers and distance education, pp.63-73. Oxford, UK: Pergamon.
  38. Oranburg, S. (2020). Distance education in the time of coronavirus: quick and easy strategies for professors. Duquesne University School of Law Research Paper No. 2020-02.
  39. Pal, D. , & Vanijja, V. (2020). Perceived usability evaluation of Microsoft Teams as an online learning platform during COVID-19 using system usability scale and technology acceptance model in India. Children and Youth Services Review, 119, 105535
  40. Park, S. Y. (2009). An analysis of the technology acceptance model in understanding university students' behavioral intention to use e-learning. Journal of Educational Technology & Society, 12(3), 150-162.
  41. Park, E., Kim, H., & Ohm, J. Y. (2015). Understanding driver adoption of car navigation systems using the extended technology acceptance model. Behaviour & Information Technology, 34(7), 741-751.
  42. Plouffe, C. R., Hulland, J, S. and Vandenbosch, M. (2001). Researchreport: richness versus parsimony in modeling technology adoption decisions-understanding merchant adoption of a smartcard-based payment system. Information Systems Research, 12(2), 208-222.
  43. Pho, D.-H.; Nguyen, X.-A.; Luong, D.-H.; Nguyen, H.-T.; Vu, T.-P.-T.; Nguyen, T.-T.-T. (2020). Data on Vietnamese students’ acceptance of using VCTs for distance learning during the COVID-19 pandemic. Data, 5, 83.
  44. Ramayah, T., Lee, J. W. C. (2012). System characteristics, satisfaction and e-learning usage: A structural equation model (SEM). TOJET: The Turkish Online Journal of Educational Technology, 11(2).
  45. Rizun, M.; Strzelecki, A. (2020). Students’ acceptance of the COVID-19 impact on shifting higher education to distance learning in Poland. Int. J. Environ. Res. Public Health, 17, 6468.
  46. Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
  47. Seddon, P., and S. Yip, (1992). An empirical evaluation of user information satisfaction (UIS) measures for use with general ledger account software. Journal of Information Systems, 6: 75-92.
  48. Seddon, P. B. (1997). A respecification and extension of the Delone & McLean model of IS Success. Information Systems Research, pp. 240–253.
  49. Shibly, H. (2011). Human Resources Information Systems Success Assessment: An İntegrative Model. Australian Journal of Basic And Applied Sciences, 5(5): 157-169.
  50. Sun, H. and Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53-78.
  51. Taylor, S., & Todd P. (1995). Assessing IT Usage: the role of prior experience. MIS Quarterly, 19(4), 561-570.
  52. Taylor, S. & Todd, P. (1995b). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-76.
  53. Telli Yamamoto, G., & Altun, D. (2020). Coronavirüs ve çevrimiçi (online) eğitimin önlenemeyen yükselişi. Üniversite Araştırmaları Dergisi, 3(1), 25-34.
  54. Venkatesh, V., Morris, M. G., Davis, G. B. and Davis, F. D., (2003), “User acceptance of Information Technology: toward a unified view”, MIS Quarterly, 27(3), 425-78.
  55. Wotto, M. (2020). The future high education distance learning in Canada, the United States, and France: Insights from before COVID-19 secondary data analysis. Journal of Educational Technology Systems, 49(2), 262- 281
  56. Yiğit T., Bingöl O., Armağan H., Çolak, R., Aruğaslan, E. Yakut, G., Çivril, H. (2010). Öğrenci ve Öğretim Elemanının Uzaktan Eğitime Bakış Açısı. Akademik Bilişim 10-XII. Akademik Bilişim Konfersansı, Muğla. s.27-32
  57. Yılmaz İnce, E., Kabul, A., & Diler, İ. (2020). Distance education in higher education in the COVID-19 pandemic process: A case of Isparta Applied Sciences University. International Journal of Technology in Education and Science (IJTES), 4(4), 343-351.
  58. Yükseköğretim Kurulu (YÖK) (2020a). Basın açıklaması, https://www.yok.gov.tr/Sayfalar/Haberler/2020/, Erişim tarihi: 26.03.2020
  59. Yükseköğretim Kurulu (YÖK) (2020b). Basın açıklaması, https://www.yok.gov.tr /Sayfalar/Haberler/2020/universitelerde-uygulanacak-uzaktan-egitime-iliskin-aciklama.aspx
  60. Zaied, A. N. H. (2012). An integrated success model for evaluating information system in public sectors. Journal of Emerging Trends in Computing and Information Sciences, VOL. 3, NO. 6, July.