Vol. 8 No. 1 (2020): Business & Management Studies: An International Journal


Prof. Dr., İstanbul Ticaret University
Prof. Dr., İstanbul Ticaret University

Published 2020-03-25


  • Likert Scales, Exploratory Factor Analysis, Normality Assumption
  • Likert Ölçekleri, Keşfedici Faktör Analizi, Normallik Varsayımı

How to Cite

ŞENCAN, H., & FİDAN, Y. (2020). NORMALITY ASSUMPTION IN THE EXPLORATORY FACTOR ANALY-SIS WITH LIKERT SCALE DATA AND TESTING ITS EFFECT ON FACTOR EXTRACTION. Business & Management Studies: An International Journal, 8(1), 640–687. https://doi.org/10.15295/bmij.v8i1.1395


In this article, in which situations the normality assumptions will be brought up to make the Exploratory Factor Analysis (EFA) with Likert data evaluated in the ordered category, what kind of EFA methods are concerned, how to make normality evaluation with SPSS, PRELIS and FACTOR software, how to make the factorial structures of different EFA methods and how the factor structures will be affected if the non-conformity EFA method is applied in cases where the normality condition is not met and how the results of the normality analysis will be reported. While the study has an tutorial quality in one aspect, it questions the factorial structures that the data which do not show normal distribution characteristics can be revealed in different statistical software. According to the findings of the research, it was understood that the most healthy factorial structures could be obtained with software such as Lisrel-Prelis and Factor.


Download data is not yet available.


  1. "Lab notes..". (t.y.). Lab notes: Examples of PRELIS runs. Retrieved Şubat 17, 2020, from Faculty of Washington: http://faculty.washington.edu/matsueda/courses/529
  2. Abraham, M. (2018). Construction and validation of the adolescent perceived risks and benefits of exposure to music from personal music players questionnaire. Psykhe, 27(2), pp. 1-16. doi:https://doi.org/10.7764/psykhe.27.2.1065
  3. AFLMC. (2008). Air force journal of logistics, 32. cilt. Gunter Air Force Base: Air Force Logistics Management Center.
  4. Alemayehu, D., Cappelleri, J. C., Emir, B., & Zou, K. H. (2017). Statistical topics in health economics and outcomes research. Newyork: CRC Press.
  5. Aletras, V. H., Kostarelis, A., Tsitouridou, M., & Nicolaou, D. N. (2010, 5 5). Development and preliminary validation of a questionnaire to measure satisfaction with home care in Greece: an exploratory factor analysis of polychoric correlations. BMC Health Services Research, pp. 1-14. Retrieved 1 20, 2020, from https://bmchealthservres.biomedcentral.com/track/pdf/10.1186/1472-6963-10-189
  6. Asún, R. A., Rdz-Navarro, K., & Alvarado, J. M. (2015). Developing multidimensional likert scales using item factor analysis the case of four-point items. Sociological Methods and Research, 2015, pp. 1-20.
  7. Baglin, J. (2014). Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR. Practical Assessment, Research & Evaluation, 19(5), pp. 1-15.
  8. Brace, N., Snelgar, R., & Kemp, R. (2016). SPSS for psychologists: and everybody else. Newyork: Macmillan International Higher.
  9. Brislin, R. W., Lonner, W. J., & Thorndike, R. M. (1973). Theoretical and methodological issues in cross cultural research in psychology. Toronto: John Wiley & Sons .
  10. Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi, Güz(32), pp. 470-482.
  11. Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), pp. 1716–1735.
  12. Catalano, A. J. (2018). Measurements in distance education: a compendium of ınstruments, scales, and measures of evualuating online learning. London: Taylor & Francis Ltd.
  13. Comrey, A. L., & Lee, H. B. (1992). A First Course in Factor Analysis. Broadway: Lawrance.
  14. Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), pp. 1-9.
  15. Courtney, M. G. (2013). Determining the Number of Factors to Retain in EFA: Using the SPSS R-Menu v2.0 to Make More Judicious Estimations. Practical Assesment Research and Evaluation, 18(8), pp. 1-14.
  16. Debelak, R., & Tran, U. S. (2016). Comparing the Effects of Different Smoothing Algorithms on the Assessment of Dimensionality of Ordered Categorical Items with Parallel Analysis. PLoS One, 11(2), pp. 1-18.
  17. Dewberry, C. (2004). Statistical methods for organizational research. London: Routledge.
  18. Dimitrov, D. M. (2012). Statistical Methods for Validation of Assessment Scale Data in Counseling. Alexandria: Wiley.
  19. Eijk, C. V., & Rose, J. (2015). Risky business: Factor analysis of survey data – assessing the probability of ıncorrect dimensionalisation. . PLoS ONE, 10(3). doi::10.1371/journal.pone.0118900
  20. Ellis, J. L. (2019). Factor analysis and item analysis. Retrieved from Applying Statistics in Behavioural Research: https://www.applyingstatisticsinbehaviouralresearch.com/documenten/factor_analysis_and_item_analysis_version_11_.pdf
  21. Ertel, S. (2013). Factor analysis: Healing an ailing model. Universitatslangvarlang Göttingen.
  22. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), pp. 272–299. Retrieved from wikipedia.: https://en.wikipedia.org/wiki/Exploratory_factor_analysis+&cd=6&hl=tr&ct=clnk&gl=tr
  23. Fernandez, G. (2011). Statistical data mining using SAS applications. London: CRC Press.
  24. Finch, W. H. (2019). Exploratory Factor Analysis. Ball State University, Muncie: Sage.
  25. Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011). Performance of Velicer’s minimum average partial factor retention method with categorical variables. Educational and Psychological Measurement, 71(3), pp. 551–570. doi:: 10.1177/0013164410389489
  26. Glynn, M. S., & Woodside, A. G. (2009). Business-to-business brand management. Bingley: Emerald.
  27. Grace-Martin, K. (t.y.). Can Likert scale data ever be continuous? Retrieved 12 2, 2019, from The Analysis Factor: https://www.theanalysisfactor.com/can-likert-scale-data-ever-be-continuous/
  28. Hahs-Vaughn, D. L. (2017). Applied multivariate statistical concepts. London: Routledge.
  29. Hanusz, Z., Tarasińska, J., & Osypiuk, Z. (2012). On the small sample properties of variants of Mardia’s and Srivastava’s kurtosis-based tests for multivariate normality. Biometrical Letters, 49(2), pp. 159-175.
  30. Hatcher, L., & O'Rourke, N. (2013). A Step-by-step approach to using SAS for factor analysis and structural equation modeling. Cary, North Carolina: SAS.
  31. Holgado, F. P., Chacón, S., Barbero, I., & Vila, E. (2010). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Journal of Qual Quant, pp. 153–166.
  32. IDRE Stats. (t.y.). Enstitute for digitel research. Retrieved 11 20, 2019, from Factor Analysis, Spss Annotated Output: https://stats.idre.ucla.edu/spss/output/factor-analysis/
  33. Jacobs, N. W., Berduszek, R. J., Dijkstra, P. U., & Sluis, C. K. (2017). Validity and reliability of the upper extremity work demands scale. J Occupational Rehability, 27(4), pp. 520–529.
  34. Johnston, D. W., & Johnston, ‎. (2001). Comprehensive clinical psychology: Health psychology. Newyork: Elseiver.
  35. Jöreskog, K. G. (1999). Formulas for skewness and kurtosis. Retrieved 11 10, 2019, from stat.rice.ed: http://www.stat.rice.edu/~dobelman/courses/kurtosis.skew.joreskog.pdf
  36. Jöreskog, K. G., & Moustaki, I. (2006). Factor analysis of ordinal variables with full information maximum likelihood. Retrieved from academia.edu: https://www.academia.edu/18542638/Factor_Analysis_of_Ordinal_Variables_with_Full_Information_Maximum_Likelihood
  37. Jöreskog, K. G., & Sörbom, D. (2002). PRELIS 2 user's reference guide: A program for multivariate data screening. Lincolnwood: Scientific Software International.
  38. Jöreskog, K. G., Olsson, U. H., & Wallentin, F. Y. (2016). Multivariate Analysis with LISREL. Oslo: Springer.
  39. Kappenburg -ten Holt, J. (2019). A comparison between factor analysis and item response theory modeling in scale analysis. Retrieved from https://www.rug.nl/research: https://www.rug.nl/research/portal/files/13080475/20140623_Gmw_TenHolt.pdf
  40. Kappenburg-ten Holt, J. (2019). A comparison between factor analysis and item response theory modeling in scale analysis. Retrieved from https://www.rug.nl/research: https://www.rug.nl/research/portal/files/13080475/20140623_Gmw_TenHolt.pdf
  41. Kim, H.-Y. (2013). Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 37(44), pp. 52-54. doi:10.5395/rde.2013.38.1.52
  42. Kolenikov, S., & Angeles, G. (2009). Socioeconomic status measurement with discrete proxy variable: Is principal component analysis a reliable answer? Review of Income and Wealth, 55(1), pp. 128-165.
  43. Kyriazos, T. A. (2018). Applied psychometrics: writing-up a factor analysis construct validation study with examples. Psychology(9), pp. 2503-2530. doi:10.4236/psych.2018.911144
  44. Levenstein, S., Prantera, C., Varvo, V., Scribano, M., Berto, E., Luzi, C., & Andreoli, A. (1993). Development of the Perceived Stress Questionnaire: A New Tool for Psychosomatic Research . Journal of Psychosomatic Research, 37(1), pp. 19-32.
  45. Lloret, S., Ferreres, A., Hernández, A., & Tomás, I. (2017). The exploratory factor analysis of items: Guided analysis based on empirical data and software. Anales de Psicología, 33(2), pp. 417-432. doi:http://dx.doi.org/10.6018/analesps.33.2.270211
  46. Lorenzo-Seva, U., & Ferrando, P. J. (2019). Factor. Retrieved 10 6, 2019, from Factor: http://psico.fcep.urv.es/utilitats/factor/Download.html
  47. Lubke, G., & Muth´en, B. (2019). Factor-analyzing Likert-scale data under the assumption of multivariate normality complicates a meaningful comparison of observed groups or latent classes. Retrieved 11 1, 2019, from https://pdfs.semanticscholar.org/: https://pdfs.semanticscholar.org/4972/062b334963451c99cdff0bff2c8f3f8d60bb.pdf
  48. McGraw-Hill . (2002). Encyclopedia of science and technology. NewYork: McGraw-Hill.
  49. Munro, B. H. (2005). Statistical methods for health care research. New York: Lippincott Williams & Wilkins .
  50. Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: Issues and applications. London: SAGE.
  51. O'Connor, B. P. (1999). Cautions regarding item-level factor analyses. Retrieved 11 12, 2019, from UBCO, Department of Psychology: https://people.ok.ubc.ca/brioconn/nfactors/itemanalysis.html
  52. Phakiti, A., Costa, P. D., Plonsky, L., & Starfield, S. (2018). The Palgrave handbook of applied linguistics research methodology. Sydney: Palgrave.
  53. Rahman, M., Matsui, N., & Ikemoto, Y. (2013). Dynamics of Poverty in Rural Bangladesh. Newyork: Springer.
  54. Rao, C. R., Miller, J. P., & Rao, D. C. (2008). Epidemiology and medical statistics. S. T. Louis: Elsevier.
  55. Raykov, T., & Marcoulides, G. A. (2008). An introduction to applied multivariate analysis. Newyork: Routledge.
  56. Researchgate. (t.y.). How do I calculate Mardia’s coefficient. Retrieved 10 26, 2019, from Researchgate: https://www.researchgate.net/post/How_do_I_calculate_Mardias_coefficient
  57. Robins, R. W., Fraley, R. C., & Krueger, R. F. (2007). Handbook of research methods in personality psychology. Neww York: Guilford Press.
  58. Sanders, M. (2014). Multifactor models of ordinal data: Comparing four factor analytical methods. The Ohio State University: Thesis, Graduate School of The Ohio State University.
  59. Sanders, M., Gugiu, P. C., & Enciso, P. (2015). How good are our measures investigating the appropriate use of factor analysis for survey instruments. Journal of Multi Disciplinary Evaluation, 11(25), pp. 22-35.
  60. Sardinha, T. B., & Pinto, M. V. (2019). Multi-dimensional analysis: research methods and current ıssues. Londonr, New York: Bloomsbury Publishing.
  61. StackExchange. (2020). In factor analysis (or in PCA), what does it mean a factor loading greater than 1? Retrieved 2 23, 2020, from Stack Exchange: https://stats.stackexchange.com/questions/266304/in-factor-analysis-or-in-pca-what-does-it-mean-a-factor-loading-greater-than
  62. Stata. (2019). STATA. Retrieved from IRT (item response theory): https://www.stata.com/stata14/irt/
  63. StatWiki. (2019). Exploratory Factor Analysis. Retrieved from statwiki: http://statwiki.kolobkreations.com/index.php?title=Exploratory_Factor_Analysis
  64. Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality Assessment of Ordered Polytomous Items With Parallel Analysis. Psychological Methods, 16(2), pp. 209 –220.
  65. Tran, T., Nguyen, T., & Chan, K. (2017). Developing cross-cultural measurement in social work research and evaluation. Newyork: Oxford.
  66. University of Texas. (t.y.). Mplus tutorial. Retrieved 11 1, 2019, from Stat.utexas.edu: https://stat.utexas.edu/images/SSC/Site/documents/MPlus_Tutorial.pdf
  67. Wherry, R. J. (1984). Contributions to correlational analysis. Orlando: Academic Press.
  68. Whitley, B. E., & Kite, M. E. (2013). Principles of research in behavioral science . Newyork: Routledge.
  69. Yong, A. G., & Pearce, S. (2013). A Beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), pp. 79-94.