
Published 2019-06-26
Keywords
- K-means Clustering, Cluster Analysis, Initial Cluster Centers
- K-ortalamalar Kümeleme Yöntemi, Kümeleme Analizi, Başlangıç Merkez Noktası
How to Cite
Abstract
The K-means clustering method is one of the simplest, unsupervised learning algorithms that divides the units of a given data set into a predetermined number of distinct clusters. This method, like other iterative methods, performs a cluster analysis based on initial center points which are randomly chosen. With the help of these initial center points, clusters belonging to similar data sets are determined and these randomly selected initial points may lead biased results. In addition, determining which of the results obtained from different initial centers is more valid is another main and important problem of K-mean cluster algorithm. To understand the existence of the initial center problem of K-mean clustering method, a fictitious study has been created. In the fictitious study, to determine and show the existence of the problem, we decided to partition the data set into two and three clusters with all possible initial centers from the data set. Since initial centers can get values from anywhere, we developed a simple algorithm to construct new initial centers, which are out of the data set. The new initial centers constructed are so near to units, which belongs to the data set, and the others are far away. In the second part of the fictitious study, we cluster the same data set with new (progressed) initial centers and examine the results from this analysis and we found different and new cluster sets which we could not construct with initial centers from the data set. In addition, we aimed to show there will be some different cluster groups, when we start the method with initial centers from the data-set and with initial centers from outside the data-set or with initial center points combining inside and outside.
Downloads
References
- Akay, Ö. (2019). “Türkiye’de Halk Kütüphanesi Kullanımının Panel Veri Kümeleme Analizi İle İncelenmesi”, Uluslararası Toplum Araştırmalar Dergisi, 10(17), 1076-1099.
- Akçapınar, G., Altun, A., & Aşkar, P. (2016). “Çevrimiçi Öğrenme Ortamındaki Benzer Öğrenci Gruplarının Kümeleme Yöntemi İle Belirlenmesi”, Eğitim Teknolojisi Kuram ve Uygulama, 6(2), 46-64.
- Aydın, N. & Seven, A.N. (2015). “İl Nüfus Ve Vatandaşlık Müdürlüklerinin İş Yoğunluğuna Göre Hibrid Kümeleme İle Sınıflandırılması”. Yönetim ve Ekonomik Araştırmalar Dergisi, 13(2), 181-201.
- Atalay, A., & Tortum, A. (2010). “Türkiye'deki İllerin 1997-2006 Yılları Arası Trafik Kazalarına Göre Kümeleme Analizi”. Pamukkale University Journal of Engineering Sciences, 16(3), 335-345.
- Bülbül, Ş., & Camkıran, C. (2018). “Bankaların Klasik ve Bulanık Yaklaşımlarla Sınıflandırılması”. Trakya University Journal of Social Science, 20(2), 367-385.
- Çalışkan, S. K., & Soğukpınar, İ. (2008). “KxKNN: K-Means ve K En Yakın Komşu Yöntemleri İle Ağlarda Nüfuz Tespiti”. EMO Yayınları, 120-24.
- Çınaroğlu, S., & Bulut, H. (2018). “K-Ortalamalar ve Parçacık Sürü Optimizasyonu Tabanlı Kümeleme Algoritmaları İçin Yeni İlklendirme Yaklaşımları”. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 413-424.
- Duran, B. S. and P. L. Odel (1974). “Cluster Analysis (Lecture Notes in Economics and Mathematical Systems”, Econometrics; Managing Editors: M. Beckmann and H. P. Kunzf. Springer Verlag: NewYork.
- Durucasu, H., Aşan, Z., & Er, F. (2006). “Öğrencilerin Yaz Okulu Hakkındaki Görüşleri İçin Kümeleme Analizi”. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 97-101.
- Fırat, M., Dikbaş, F., Koç, A. C., & Güngör, M. (2012). “K-Ortalamalar Yöntemi İle Yıllık Yağışların Sınıflandırılması Ve Homojen Bölgelerin Belirlenmesi”. İMO Teknik Dergi, 383, 6037-6050.
- Forgy E.W. (1965). “Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of Classifications, Biometrics, 21 (3), 768-769.
- Fraley, C., & Raftery, A. E. (1998). “How Many Clusters? Which Clustering Method? Answers via Model-based Cluster Analysis”. The Computer journal, 41(8), 578-588.
- Khan, S. S., & Ahmad, A. (2013). “Cluster Center İnitialization Algorithm For K-Modes Clustering”. Expert Systems with Applications, 40(18), 7444-7456.
- Hajizadeh, E., Ardakani, H. D., ve Shahrabi, J. (2010). “Application of Data Mining Techniques ın Stock Markets: A Survey”. Journal of Economics and International Finance, 2(7), 109.
- Han, J., and Kamber, M., (2006), Data Mining Concepts and Techniques, Morgan Kauffmann Publishers Inc.
- Işık, M., & Çamurcu, A. Y. (2007). K-means, K-medoids ve bulanık C-means algoritmalarının uygulamalı olarak performanslarının tespiti.
- Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Vol:6. Englewood Cliffs: Prentice hall
- Karypis, M. S. G., Kumar, V., & Steinbach, M. (2000, August). “A comparison of document clustering techniques”. In TextMining Workshop at KDD2000 (2000).
- Mac Queen, J.B., (1967). “Some Methods for Classification and Analysis of Multivariate Observations”. In: Proceedings of the Symposium on Mathematics and Probability, 5th, Berkely.
- Meila, M., & Heckerman, D. (2013). “An experimental comparison of several clustering and initialization methods”. arXiv preprint arXiv:1301.7401.
- Mercer D. P., (2003). “Clustering Large Datasets”, http://www.stats.ox.ac.uk/∼ mercer/documents/Transfer.pdf (date accessed: 03.21.2011).
- Na, S., Xumin, L., & Yong, G. (2010, April). “Research on k-means clustering algorithm: An improved k-means clustering algorithm”. In 2010 Third International Symposium on intelligent information technology and security informatics (pp. 63-67). IEEE.
- Özdemir, A., & Orçanlı, K. (2012). “İki Aşamalı Kümeleme Algoritması İle Pazar Bölümlemesi, Müşteri Profillerinin Belirlenmesi ve Niş Pazarların Tespiti”. Uşak Üniversitesi Sosyal Bilimler Dergisi, (11).
- Higgs, R. E., Bemis, K. G., Watson, I. A., & Wikel, J. H. (1997). “Experimental designs for selecting molecules from large chemical databases”. Journal of Chemical Information and Computer Sciences, 37(5), 861-870.
- Selvi, H. Z., Çağlar, B. (2016). “Using K-Means and K-Medoids Methods for Multivariate Mapping”, International Journal of Applied Mathematics, Electronics and Computers, 4, 342-345.
- Steinley, D., & Brusco, M. J. (2007). “Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques”. Journal of Classification, 24(1), 99-121.
- Tatlıdil, H. (1992). “Uygulamalı Çok Değişkenli İstatistiksel Analiz”, H.Ü. Fen Fakültesi İstatistik Bölümü, Ankara.
- Witten I. H., Frank E., (1999), “Data Mining: Practical machine learning tools with Java implementations”, San Francisco, Morgan Kaufmann.
- Yalçın, S., & Ayyıldız, E (2018). “Analysis of Airports Using Clustering Methods: Case Study In Turkey”. Journal of Management Marketing and Logistics, 5(3), 194-205.
- Yaraş, E. (2005). “Tüketicilerin Pazarlama Karması Kararları Ve Marka Değeri Algılamaların Göre Kümeler Halinde İncelenmesi”. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 19(2), 349-372.
- Yedla, M., Pathakota, S. R., & Srinivasa, T. M. (2010). “Enhancing K-Means Clustering Algorithm with Improved Initial Center”. International Journal of computer science and information technologies, 1(2), 121-125.
- Zırhlıoğlu, G ve Karaca, S., (2006). “Genç Bayanlar Dünya Voleybol Şampiyonasına Katılan Sporcuların Kümeleme Analizi İle İncelenmesi”. Hacettepe J. Of Sport Sciences, 17(1): 20-25.