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ABSTRACT Renewable energy sources play an essential role in sustainable development. The
share of renewable energy-based energy generation is rapidly increasing all over the world.

Keywords: Turkey has a great potential in terms of both solar and wind energy due to its geographical
Renewable Energy location. The desired level has not yet been reached in using this potential. Nevertheless, with
! the increase in installed power in recent years, electricity generation from solar energy has

Solar Energy, gained momentum. In this study, data on cumulative installed solar power in Turkey in the
Prediction, 2009-2019 period were used. Artificial Neural Network (ANN) and Bidirectional Long

Short-Term Memory (BLSTM) methods were selected to predict the cumulative installed
solar power for 2020 with these data. The cumulative installed power was predicted, and the
results were compared and interpreted.
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TURKIYE ICIN GUNES ENERJiSi KURULU GUCUNUN YAPAY SINIiR AGI VE
IKI YONLU UZUN- KISA VADELI BELLEK KULLANILARAK TAHMINI

0z Stirdiiriilebilir bir kalkinma igin yenilenebilir enerji kaynaklart énemli bir rol
oynamakta ve yenilenebilir enerji kaynakly enerji tivetiminin pay: tiim diinyada hizla
Anahtar Kelimeler: artmaktadir. Ulkemiz, bulundugu cografi konumu nedeniyle hem giines hem de riizgdr

enetjisi agisindan biiyiik bir potansiyele sahiptir. Bu potansiyeli kullanma konusunda heniiz
istenen diizeye ulasilamanugtir. Yine de son yillarda kurulu giiciin artmasiyla birlikte giines
Giineg Enerjisi, enetjisinden elektrik viretimi ¢calismalart hiz kazanmugtir. Bu calismada, Tiirkiye'nin 2009-
2019 yillart arasindaki kiimiilatif giines enerjisi kurulu giicii verileri kullamlmistir. Bu
veriler ile 2020 yil1 igin kiimiilatif kurulu giicii tahmin etmek amaciyla Yapay Sinir A
Yapay Sinir A1 (Artificial Neural Network - ANN) ve Iki Yonlii Uzun-Kisa Vadeli Bellek (Bidirectional
Long Short-Term Memory - BLSTM) yéntemleri kullamlmstir. Kiimiilatif kurulu giig
tahmin edilmis ve sonuglar karsilastinlarak yorumlanmigtir.

Yenilenebilir Enerji,

Tahmin,

JEL Kodlarz:
020, Q42, Q47

1. INTRODUCTION

The energy needs of countries are increasing day by day. As a result of
increasing consumption, fossil energy resources in the world are rapidly running out.
Nevertheless, fossil energy resources still have a considerable share in primary energy
consumption across the world. Primary energy consumption by sources in 2018 and
2019 is shown for the entire world in Figure 1 and Figure 2. As can be seen from the
Figures, the primary energy consumption originating from fossil energy resources is
over 80% in both years. Moreover, Turkey’s primary energy consumption by sources
in 2018 and 2019 is shown in Table 1. Hydroelectric energy data are not given under

renewable energy in the reference.

]}
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2018 (Total: 576.23 EJ)

»

= Oil = Natural Gas = Coal = Nuclear Energy = Hydroelectric = Renewable Energy

Figure 1. Primary energy consumption in EJ by sources in 2018 (BP, 2020a:9)

Because of the rapid consumption of these resources, renewable energy sources
are essential. Besides, as it is known, fossil energy resources cause global warming,
leading to various natural disasters. It is crucial to turn to clean, reliable and
sustainable renewable energy sources instead of fossil energy resources, which are

known to cause significant damage to the environment (Kilig, 2015:29).

2019 (Total: 583.90 EJ)

D

m Oil = Natural Gas = Coal = Nuclear Energy = Hydroelectric = Renewable Energy

Figure 2. Primary energy consumption in EJ by sources in 2019 (BP, 2020a:9)
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Table 1. Turkey’s primary energy consumption in EJ by sources in 2018 and 2019

(BP, 2020a:9)
Year | Oil | Natural Gas | Coal Nuclear | Hydroelectric | Renewable Total
Energy Energy
2018 | 2.00 1.70 1.71 - 0.54 0.34 6.29
2019 | 2.03 1.56 1.70 - 0.79 0.41 6.49

In addition to the damage caused by fossil energy resources to the environment,
our country is heavily dependent on foreign resources in energy supply. Since the
1980s, imported energy resources have been used to meet energy needs. Moreover,
high-cost investments in terms of fossil-based imports have come besides. Thus,
dependency on foreign resources in energy supply reached a very high level of 72.4%
in 2018. Consequently, the cost to our country was $ 43 billion in 2018 and $ 41.6 billion
in 2019 (MMO, 2020). It is clear that this situation creates a vast burden on our

country’s economy and leads to an increase in the current account deficit.

On the other hand, renewable energy costs are decreasing day by day, thanks
to technological developments (KPMG, 2019:3). Furthermore, due to its geographical
location, Turkey is highly advantageous in solar and wind energy production (Kayikci
and Kilig, 2019:213), and increasing the use of these resources will decrease external

dependency. (Ceylan and Baser, 2014:57).

Turkey has a high solar energy potential thanks to its location in the so-called
sunbelt (Altuntop and Erdemir, 2013:70). Distribution of Turkey’s total solar energy
potential by regions and months is shown in Table 2 and Table 3. Table 2 shows the
total solar energy potential in kWh/m? and sunshine duration hours per year for each
region. Table 3 shows the total solar energy potential in kcal/cm? and kWh/m? and

sunshine duration hours per month for Turkey.
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Table 2. Distribution of Turkey’s Solar Energy Potential by Regions (MMO, 2014:167)

Region Total Solar Energy Sunshine Duration
(kWh/m?2-year) (hour/year)

Southeastern Anatolia 1460 2993
Mediterranean 1390 2956
Eastern Anatolia 1365 2664
Central Anatolia 1314 2628
Aegean 1304 2738
Marmara 1168 2409
Black Sea 1120 1971

=77
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Table 3. Distribution of Turkey’s Total Solar Energy Potential by Months (MMO,

2014:166)
Months Monthly Total Solar Energy Sunshine Duration
(hour/month)
kcal/cm?-month kWh/m2-month
January 4.45 51.75 103.0
February 544 63.27 115.0
March 8.31 96.65 165.0
April 10.51 122.23 197.0
May 13.23 153.86 273.0
June 14.51 168.75 325.0
July 15.08 175.38 365.0
August 13.62 158.40 343.0
September 10.60 123.28 280.0
October 7.73 89.90 214.0
November 5.23 60.82 157.0
December 4.03 46.87 103.0
Total 112.74 1311.0 2640.0
Average | 308.0 kcal/cm?-day | 3.6 kWh/m?2-day 7.2 hour/day

]}
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However, not using this potential effectively causes solar energy not to be
counted as a solution alternative to the problems above. Efforts should be made to use

solar energy effectively and sustainably in our country (Kilig, 2015:30).

Generally, photovoltaic (PV) solar power systems and concentrated solar power

(CSP) systems are used in electricity generation from solar energy (ETKB, 2020).

Turkey has 6901 solar power plants by the end of 2019, and the cumulative
installed solar power is 5996 MW (TEIAS, 2019; BP, 2020b:A2). Turkey’s cumulative

installed solar power by years is shown in Table 4.

Table 4. Turkey's cumulative installed solar power by years (BP, 2020b:A2)

Years 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
Cumulative 5 6 7 12 19 41 250 834 | 3422 | 5064 | 5996
installed

solar
power (MW)

Table 5 shows the distribution of Turkey’s electricity generation in terawatt-

hours by energy sources in 2018 and 2019.

Table 5. Electricity generation in Turkey by energy sources (BP:2020a:61)

Year | Oil | Natural Gas | Coal | Nuclear Energy | Hydroelectric Renewable Other | Total

Energy

Wind | Solar | Other

2018 | 0.3 925 113.2 - 59.9 19.9 7.8 10.1 1.0 304.8

2019 | 0.2 58.1 114.6 - 89.2 21.7 | 109 12.7 1.1 308.5

=77
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Both Table 4 and Table 5 show that there are developments in the field of solar
energy. However, these developments are insufficient. Our country, which has a high
potential for solar energy, will reduce its external dependency and remove many
uncertainties in the future due to fossil energy resources by increasing installed solar

power and using our solar potential better.

Prediction plays a vital role in the field of energy. Various studies in the
literature have made predictions using ANN methods. Elizondo, Hoogenboom and
McClendon (1994) developed an ANN model to predict daily solar radiation.
Mohandes, Rehman and Halawani (1998) estimated global solar radiation using
ANNSs. Li, Wunsch, O'Hair and Giesselmann (2001) estimated wind turbine energy
production using ANNs. Reddy and Ranjan (2003) estimated the average daily and
hourly values of global solar radiation using ANNs and compared this with other
correlation models. Sozen (2004) mapped Turkey’s solar potential using ANNSs. Sozen,
Arcaklioglu, Ozalp and Caglar (2005) forecasted the solar potential of Turkey with
ANNSs. Zhou, Wu and Yan (2005) estimated solar radiation using ANNSs. Bilgili, Sahin
and Yasar (2007) used ANNS to predict wind speed at the target station with reference
station data. Ata (2008) analyzed the energy yield of an autonomous wind turbine at
different heights using ANNs. Rehman and Mohandes (2008) estimated global solar
radiation with ANNs using air temperature and relative humidity. Lam, Wan and
Yang (2008) modelled solar radiation with ANNs for different climates of China.
Bosch, Lopez and Batlles (2008) estimated daily solar radiation in a mountainous
region using ANNs. Mabel and Fernandez (2008) predicted wind power generation.
Senkal and Kaleli (2009) estimated solar radiation in Turkey using ANNSs and satellite
data. Fadare (2009) modelled the solar energy potential in Nigeria using an ANN
model. Tascikaraoglu and Uzunoglu (2011) predicted wind speed by using the wavelet
transform (WT) and ANNs. Khatib, Mohamed, Sopian and Mahmoud (2012) predicted
solar power generation for Malaysia using ANNSs. Mellit, Saglam and Kalogirou (2013)
estimated the energy to be produced by a PV module with an ANN-based model. Kilig
and Arabaci (2015) predicted future wind speed values for Burdur province by using
ANN method. Kaya, Caner and Oguz (2016) determined the wind potential of

Kastamonu province by modelling six different wind turbines and using ANNs and
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adaptive neuro-fuzzy inference systems. Dumitru, Gligor and Enachescu (2016)
forecasted photovoltaic energy production using ANNSs. Li, Rahman, Vega and Dong
(2016) developed a hierarchical approach for forecasting photovoltaic energy
production using machine learning methods. Sahan and Yiiksel (2016) predicted solar
energy using ANNs with meteorological data from the Mediterranean region. Senol
and Musayev (2017) predicted electricity generation from wind energy with ANNSs.
Filik and Filik (2017) developed a new hybrid approach based on autoregressive and
ANNSs for prediction of short-term wind speed. Ozsoy and Aydogan (2017) used
ANN s for predicting installed wind power in Turkey. Senol (2017) predicted wind
energy and wind energy potential using ANNSs in his master’s thesis. Dumitru and
Gligor (2017) forecasted the daily average energy production for wind energy with
ANNSs. Karasu, Altan, Sarac and Hacioglu (2017) predicted solar radiation with
machine learning methods. Cevik, Cakmak and Altas (2017) made a forecast of hourly
solar radiation for Trabzon province a day ahead with the help of ANNSs. Kose, Atila,
Gtineser and Recebli (2018) developed a new analytical method for estimating hourly
and daily wind speed and compared the results with estimates obtained with ANNS.
Kirbas (2018) made a short-term multi-step wind speed prediction using statistical
methods and ANNSs. Canttirk (2018) predicted electricity from a wind farm with ANNs
in his master’s thesis. Altinsoy and Bal (2019) used ANNs in long-term wind speed
predictions and conducted a performance review. Huang and Kuo (2018) forecasted
short-term wind speed with ANNs. Uguz, Oral and Caglayan (2019) predicted the
energy to be obtained from PV power plants using machine learning methods. Gabral1
and Aslan (2020) estimated short and medium-term solar radiation in Istanbul

Biiytikcekmece District with ANNSs.

In this study, cumulative installed solar power was predicted for Turkey with
ANN and BLSTM. As far as we reviewed, there is no such study using these two
methods in order to predict the cumulative installed solar power for Turkey. It was
aimed to assist in energy production planning for the future and guide in the correct

direction of energy investments to be made.

=77
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2. ARTIFICIAL NEURAL NETWORK

Various prediction methods are used in the literature. In this study, it is aimed
to predict the cumulative installed solar power by using ANN and BLSTM. ANNs are
an artificial intelligence and machine learning method inspired by biological nerve
cells (Esfe, Saedodin, Sina, Afrand and Rostami, 2015:51). ANNs generally consist of
an input layer, one or multiple hidden layers, and an output layer, neurons in these
layers and weights. Figure 3 shows a network with 24 neurons. This method is used
for prediction and classification from existing data. For this purpose, the system is
trained with real data and then it is expected to produce outputs suitable for test data.
ANN is used for classification and prediction purposes in many areas such as skin
cancer level determination (Esteva, Kuprel, Novoa, Ko, Swetter, Blau and Thrun,
2017), detection of automobile engine faults (Ahmed, El Sayed, Gadsden, Tjong and
Habibi, 2014), drug classification (Byvatov, Fechner, Sadowski and Schneider, 2003),
electric load estimation (Park, El-Sharkawi, Marks, Atlas and Damborg, 1991), stock
market forecast (Ticknor, 2013), wind speed estimation (Khosravi, Koury, Machado
and Pabon, 2018) and electricity energy demand forecasting (Ozden and Oztiirk, 2018)
because of its adaptability, non-linearity and arbitrary function mapping ability (Garg,

Sharma, Parmar, Soni, Singh and Maji, 2016).

24 Neurons

Output Layer

Input Layer

Hidden Layer 1

Figure 3. Network in structure 3-24-1
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Another popular algorithm inspired by ANNSs is deep learning (networks)
algorithms. These algorithms are used in many areas such as image processing,
classification and natural language processing (Deng and Yu, 2014:202). These
methods, which we can call deep learning networks, are different from classical ANNs
in various ways, such as layer numbers (LeCun, Bengio and Hinton, 2015:436).
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) are the
most well-known deep learning algorithms. RNNs can handle input sequences of
sequential length and time series problems, but gradient can descend or ascend in the
training process (Salamon and Bello, 2017, Bengio, Simard and Frasconi, 1994). This
can cause gradient loss issues in training and cause learning problems not to find the
correct relationships in the sequences of the RNN model. This is now LSTM which is
a particular version of the regular RNN. Employees such as LSTM speech recognition
(Hughes and Mierle, 2013), signal works (Yildirim, 2018), text classification (Zhou, Qi,
Zheng, Xu, Bao and Xu, 2016), video identification (Bin, Yang, Shen, Xie, Shen and Li,
2018) are used. Normal (One Way) LSTMs can fail in sequential operations such as
time series since they do one operation (Graves and Schmidhuber, 2005). For this
reason, BLSTMs are a connection and run two LSTMs in the input sequence instead of
one LSTM in problems where the input sequence is all time steps (Figure 4). The first
LSTM can be made over the input sequence (from past to future) and the second LSTM
operates in the opposite direction (from the future to the past) on the copy of the input
sequence (Kiperwasser and Goldberg, 2016:316). Thus, it can enable the system to learn

the problem faster and more completely.

Outputs Yi1 1A Yot i Y
Activati ’ f + ’
ivation
Laye 1J.¢ vj.u fI‘ i -J‘a

Backward jre—

ayer < LSTM LSTM LSTM |« -{ LSTM f—o
Hayer | LSTM —{ LSTM —>} LSTM [—— - LSTM [—
Inputs Xea X Xt e Xr

Figure 4. BLSTM structure
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3. IMPLEMENTATION

In this study, Turkey’s data on cumulative installed solar power given in Table
4 for the period 2009-2019 were used. The data were collected from an online database.
Therefore, an Ethics Committee Permission was not required in this study. Since the
limited and one-dimensional data available are a time series, it is necessary to make
use of historical data for prediction. In order to get good results, the data were
transformed into a series with three elements. ANN and BLSTM methods were used
on these series, which gives good results in prediction processes. In both methods, the
cumulative installed solar power values in megawatts of consecutive years were used
as three inputs (I1, 12, I3), and the cumulative installed solar power value of the year
after these consecutive years as the only output (O) (Table 6). The values of I1, 12, I3,
and O in the first row are the cumulative installed solar power data for the years 2009,
2010, 2011, and 2012 in Table 4, respectively. The second input value in the first row is
used as the first input value in the second row. The third input value in the first row
is used as the second input value in the second row. The output value in the first row
is used as the third input value in the second row. This shifting is continued for the
remaining six rows. In other words, the values in the first row are from 2009, 2010,
2011, and 2012, respectively, while those in the second row are 2010, 2011, 2012, and
2013. This process is continued until 2019. The aim here is to produce data series to be

applied in the method.

]}
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Table 6. Three-element data set of installed solar power values for the period 2009-

2019

Il 12 I3 o

5 6 7 12

6 7 B2 19

7 12 19 41
12 19 41 250
19 41 250 834
41 250 834 3422
250 834 3422 5064
834 3422 5064 5996

The ANN method includes three inputs, one output and one hidden layer (3-
24-1) with 24 neurons. It was carried out with 200 epochs during ANN training, and
from the data for the years 2016, 2017 and 2018, a value of 5995.989 was estimated for
the actual value 5996. A relative error has been found -0.0002% after comparing both
values (Table 7).

BLSTM method was trained with 50 epochs, and Adam optimizer was used.
Instead of the classical stochastic gradient reduction method, Adam is a more efficient,
adaptive optimization algorithm, i.e. it updates the learning rate for each parameter

(Kingma and Ba, 2014:1, Ruder, 2016:7).

By this method, a value of 6146.651 was estimated for the actual value 5996 for
2019. A relative error has been found 2.5125% after comparing both values (Table 7).
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Table 7. Prediction for 2019 from the data for the period 2016-2018

Methodology 2016 2017 2018 2019
Actual values in MW 834 3422 5064 5996
ANN Prediction in MW (Relative Error -0.0002%) 5995.989
Bidirectional LSTM Prediction in MW (Relative Error 2.5125%) 6146.651

Moreover, the ANN method is implemented on the data for the period 2016-
2018 in order to predict the cumulative installed solar power value for 2019 with
different network structures. As shown in Table 8, the best prediction value is obtained

by the 3-24-1 network structure.

Table 8. Prediction for 2019 with different network structures

Network Structure | Prediction in MW | Relative Error %
3-5-3-1 6009.53 0.2257
3-5-5-1 5627.861 -6.1397
3-3-5-1 5876.123 -1.9993
3-10-5-1 5805.749 -3.1730
3-5-10-1 5601.440 -6.5804
3-5-1 5674.155 -5.3677
3-8-1 5992.897 -0.0518
3-11-1 5995.281 -0.0120
3-14-1 5995.632 -0.0061
3-17-1 5995.931 -0.0012
3-20-1 5995.930 -0.0012
3-24-1 5995.989 -0.0002

]}

INSTALLED SOLAR POWER PREDICTION FOR TURKEY USING ARTIFICIAL NEURAL... 4060



bmnij (2020) 8 (5):4047-4068

ANN and BLSTM methods were used to estimate the value for 2020 from the
data for 2017, 2018, and 2019 with the same training and optimization parameters. The
cumulative installed solar power value was predicted as 6499.992 for the year 2020 by
the ANN method and as 6617.015 by the BLSTM method (Table 9). Although the actual
value for 2020 is unknown, the cumulative installed solar power is 6294.7 MW by the

end of August 2020 (TEIAS, 2020).

Table 9. Prediction for 2020 from the data for the period 2017-2019

Year 2017 2018 2019 2020
Actual Value 3422 5064 5996 -
ANN Prediction 6499.992
BLSTM Prediction 6617.015

Furthermore, the ANN method is implemented on the data for the period 2017-
2019 in order to predict the cumulative installed solar power value for 2020 with

different network structures. The results are given in Table 10.

=77
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Table 10. Prediction for 2020 with different network structures

Network Structure | Prediction in MW
3-5-5-1 6341.412
3-3-5-1 6442.569

3-10-5-1 6367.772
3-5-10-1 6356.365
3-5-1 6230.179
3-8-1 6375.942
3-11-1 6499.175
3-14-1 6499.123
3-17-1 6499.834
3-20-1 6499.925
3-24-1 6499.992

In order to compare the results of the ANN and BLSTM methods, other
prediction methods such as Support Vector Regression (SVR), Decision Tree
Regression (DTR) and Random Forest Regression (RFR) are implemented on the same
data with optimized parameters in order to predict the cumulative installed solar

power value for 2020 (Table 11).

]}
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Table 11. Comparison of the results obtained from ANN and BLSTM methods with

the results of other prediction methods

Prediction Method Prediction for 2019 Prediction for 2020
(Actual value is 5996 MW) | (Actual value is unknown)
ANN 5995.989 6499.992
BLSTM 6146.651 6617.015
SVR 2945.31 3429.96
DTR 5064 5996
RFR 4336.26 5490.98

As shown in Table 11, the ANN method yielded the best prediction result for
2019 when compared with other prediction methods. Since the value for 2020 is

unknown, it can not be determined which method gives the best result.
4. CONCLUSION

In this study, the cumulative installed solar power was predicted for 2020 by
using ANN and BLSTM. The results show that the ANN method yields a better result
than the BLSTM method for 2019. The predicted value for 2020 may not be reached
due to the pandemic, as the pandemic has negatively impacted energy investments in
every field. Investments in solar energy in Turkey are expected to increase with the
decline in the impact of the pandemic. Turkey has great potential in solar energy.
Considering this potential, it should be aimed to produce their own energy in
uncultivated land, on house and company roofs that are exposed to the sun.

In future research, by considering the solar power capacity and the capacity of
other renewable energy sources in Turkey, their contributions to the national economy
can be analyzed financially by years, and the contribution of solar energy to the

economy can be estimated over the years with the machine learning methods.

=77
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